Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles D. Schwieters is active.

Publication


Featured researches published by Charles D. Schwieters.


Journal of Magnetic Resonance | 2003

The Xplor-NIH NMR molecular structure determination package

Charles D. Schwieters; John J. Kuszewski; Nico Tjandra; G. Marius Clore

We announce the availability of the Xplor-NIH software package for NMR biomolecular structure determination. This package consists of the pre-existing XPLOR program, along with many NMR-specific extensions developed at the NIH. In addition to many features which have been developed over the last 20 years, the Xplor-NIH package contains an interface with a new programmatic framework written in C++. This interface currently supports the general purpose scripting languages Python and TCL, enabling rapid development of new tools, such as new potential energy terms and new optimization methods. Support for these scripting languages also facilitates interaction with existing external programs for structure analysis, structure manipulation, visualization, and spectral analysis.


Cell | 2013

Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue

Jun-Xia Lu; Wei Qiang; Wai-Ming Yau; Charles D. Schwieters; Stephen C. Meredith; Robert Tycko

In vitro, β-amyloid (Aβ) peptides form polymorphic fibrils, with molecular structures that depend on growth conditions, plus various oligomeric and protofibrillar aggregates. Here, we investigate structures of human brain-derived Aβ fibrils, using seeded fibril growth from brain extract and data from solid-state nuclear magnetic resonance and electron microscopy. Experiments on tissue from two Alzheimers disease (AD) patients with distinct clinical histories showed a single predominant 40 residue Aβ (Aβ40) fibril structure in each patient; however, the structures were different from one another. A molecular structural model developed for Aβ40 fibrils from one patient reveals features that distinguish in-vivo- from in-vitro-produced fibrils. The data suggest that fibrils in the brain may spread from a single nucleation site, that structural variations may correlate with variations in AD, and that structure-specific amyloid imaging agents may be an important future goal.


Nature | 2007

Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR.

Chun Tang; Charles D. Schwieters; G. Marius Clore

Large-scale domain rearrangements in proteins have long been recognized to have a critical function in ligand binding and recognition, catalysis and regulation. Crystal structures have provided a static picture of the apo (usually open) and holo usually closed) states. The general question arises as to whether the apo state exists as a single species in which the closed state is energetically inaccessible and interdomain rearrangement is induced by ligand or substrate binding, or whether the predominantly open form already coexists in rapid equilibrium with a minor closed species. The maltose-binding protein (MBP), a member of the bacterial periplasmic binding protein family, provides a model system for investigating this problem because it has been the subject of extensive studies by crystallography, NMR and other biophysical techniques. Here we show that although paramagnetic relaxation enhancement (PRE) data for the sugar-bound form are consistent with the crystal structure of holo MBP, the PRE data for the apo state are indicative of a rapidly exchanging mixture (ns to μs regime) of a predominantly (∼95%) open form (represented by the apo crystal structure) and a minor (∼5%) partially closed species. Using ensemble simulated annealing refinement against the PRE data we are able to determine a 〈r-6〉 ensemble average structure of the minor apo species and show that it is distinct from the sugar-bound state.


Cell | 2008

Regulation of T Cell Receptor Activation by Dynamic Membrane Binding of the CD3ɛ Cytoplasmic Tyrosine-Based Motif

Chenqi Xu; Etienne Gagnon; Matthew E. Call; Jason R. Schnell; Charles D. Schwieters; Christopher V. Carman; James J. Chou; Kai W. Wucherpfennig

Many immune system receptors signal through cytoplasmic tyrosine-based motifs (ITAMs), but how receptor ligation results in ITAM phosphorylation remains unknown. Live-cell imaging studies showed a close interaction of the CD3epsilon cytoplasmic domain of the T cell receptor (TCR) with the plasma membrane through fluorescence resonance energy transfer between a C-terminal fluorescent protein and a membrane fluorophore. Electrostatic interactions between basic CD3epsilon residues and acidic phospholipids enriched in the inner leaflet of the plasma membrane were required for binding. The nuclear magnetic resonance structure of the lipid-bound state of this cytoplasmic domain revealed deep insertion of the two key tyrosines into the hydrophobic core of the lipid bilayer. Receptor ligation thus needs to result in unbinding of the CD3epsilon ITAM from the membrane to render these tyrosines accessible to Src kinases. Sequestration of key tyrosines into the lipid bilayer represents a previously unrecognized mechanism for control of receptor activation.


Nature Structural & Molecular Biology | 2016

Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein.

Marcus D. Tuttle; Gemma Comellas; Andrew J. Nieuwkoop; Dustin J. Covell; Deborah A. Berthold; Kathryn D. Kloepper; Joseph M. Courtney; Jae Kim; Alexander M. Barclay; Amy Kendall; William Wan; Gerald Stubbs; Charles D. Schwieters; Virginia M.-Y. Lee; Julia M. George; Chad M. Rienstra

Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinsons disease (PD). We present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by EM and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel, in-register β-sheets and hydrophobic-core residues, and with substantial complexity arising from diverse structural features including an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a new orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as supported by the structural similarity of early-onset-PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules, to aid in PD diagnosis and treatment.


Structure | 2013

Recommendations of the wwPDB NMR Validation Task Force

Gaetano T. Montelione; Michael Nilges; Ad Bax; Peter Güntert; Torsten Herrmann; Jane S. Richardson; Charles D. Schwieters; Wim F. Vranken; Geerten W. Vuister; David S. Wishart; Helen M. Berman; Gerard J. Kleywegt; John L. Markley

As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment.


Journal of the American Chemical Society | 2010

Solution Structure of the 128 kDa Enzyme I Dimer from Escherichia coli and Its 146 kDa Complex with HPr Using Residual Dipolar Couplings and Small- and Wide-Angle X-ray Scattering

Charles D. Schwieters; Jeong-Yong Suh; Alexander Grishaev; Rodolfo Ghirlando; Yuki Takayama; G. Marius Clore

The solution structures of free Enzyme I (EI, ∼128 kDa, 575 × 2 residues), the first enzyme in the bacterial phosphotransferase system, and its complex with HPr (∼146 kDa) have been solved using novel methodology that makes use of prior structural knowledge (namely, the structures of the dimeric EIC domain and the isolated EIN domain both free and complexed to HPr), combined with residual dipolar coupling (RDC), small- (SAXS) and wide- (WAXS) angle X-ray scattering and small-angle neutron scattering (SANS) data. The calculational strategy employs conjoined rigid body/torsion/Cartesian simulated annealing, and incorporates improvements in calculating and refining against SAXS/WAXS data that take into account complex molecular shapes in the description of the solvent layer resulting in a better representation of the SAXS/WAXS data. The RDC data orient the symmetrically related EIN domains relative to the C(2) symmetry axis of the EIC dimer, while translational, shape, and size information is provided by SAXS/WAXS. The resulting structures are independently validated by SANS. Comparison of the structures of the free EI and the EI-HPr complex with that of the crystal structure of a trapped phosphorylated EI intermediate reveals large (∼70-90°) hinge body rotations of the two subdomains comprising the EIN domain, as well as of the EIN domain relative to the dimeric EIC domain. These large-scale interdomain motions shed light on the structural transitions that accompany the catalytic cycle of EI.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3′ UTR of turnip crinkle virus

Xiaobing Zuo; Jinbu Wang; Ping Yu; Dan Eyler; Huan Xu; Mary R. Starich; David M. Tiede; Anne E. Simon; Wojciech K. Kasprzak; Charles D. Schwieters; Bruce A. Shapiro; Yun-Xing Wang

The 3′ untranslated region (3′ UTR) of turnip crinkle virus (TCV) genomic RNA contains a cap-independent translation element (CITE), which includes a ribosome-binding structural element (RBSE) that participates in recruitment of the large ribosomal subunit. In addition, a large symmetric loop in the RBSE plays a key role in coordinating the incompatible processes of viral translation and replication, which require enzyme progression in opposite directions on the viral template. To understand the structural basis for the large ribosomal subunit recruitment and the intricate interplay among different parts of the molecule, we determined the global structure of the 102-nt RBSE RNA using solution NMR and small-angle x-ray scattering. This RNA has many structural features that resemble those of a tRNA in solution. The hairpins H1 and H2, linked by a 7-nucleotide linker, form the upper part of RBSE and hairpin H3 is relatively independent from the rest of the structure and is accessible to interactions. This global structure provides insights into the three-dimensional layout for ribosome binding, which may serve as a structural basis for its involvement in recruitment of the large ribosomal subunit and the switch between viral translation and replication. The experimentally determined three-dimensional structure of a functional element in the 3′ UTR of an RNA from any organism has not been previously reported. The RBSE structure represents a prototype structure of a new class of RNA structural elements involved in viral translation/replication processes.


Structure | 2015

Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop

Andrej Sali; Helen M. Berman; Torsten Schwede; Jill Trewhella; Gerard J. Kleywegt; Stephen K. Burley; John L. Markley; Haruki Nakamura; Paul D. Adams; Alexandre M. J. J. Bonvin; Wah Chiu; Matteo Dal Peraro; Frank Di Maio; Thomas E. Ferrin; Kay Grünewald; Aleksandras Gutmanas; Richard Henderson; Gerhard Hummer; Kenji Iwasaki; Graham Johnson; Catherine L. Lawson; Jens Meiler; Marc A. Marti-Renom; Gaetano T. Montelione; Michael Nilges; Ruth Nussinov; Ardan Patwardhan; Juri Rappsilber; Randy J. Read; Helen R. Saibil

Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models?


Nature Chemistry | 2012

Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy

Ishita Sengupta; Philippe S. Nadaud; Jonathan J. Helmus; Charles D. Schwieters; Christopher P. Jaroniec

Biomacromolecules that are challenging for the usual structural techniques can be studied with atomic resolution by solid-state nuclear magnetic resonance. However, the paucity of >5 Å distance restraints, traditionally derived from measurements of magnetic dipole-dipole couplings between protein nuclei, is a major bottleneck that hampers such structure elucidation efforts. Here we describe a general approach that enables the rapid determination of global protein fold in the solid phase via measurements of nuclear paramagnetic relaxation enhancements (PREs) in several analogs of the protein of interest containing covalently-attached paramagnetic tags, without the use of conventional internuclear distance restraints. The method is demonstrated using six cysteine-EDTA-Cu2+ mutants of the 56-residue B1 immunoglobulin-binding domain of protein G, for which ~230 longitudinal backbone 15N PREs corresponding to ~10-20 Å distances were obtained. The mean protein fold determined in this manner agrees with the X-ray structure with a backbone atom root-mean-square deviation of 1.8 Å.

Collaboration


Dive into the Charles D. Schwieters's collaboration.

Top Co-Authors

Avatar

G. Marius Clore

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yun-Xing Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexander Grishaev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nico Tjandra

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Yu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ye Tian

Sanford-Burnham Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge