Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles G. Eberhart is active.

Publication


Featured researches published by Charles G. Eberhart.


Acta Neuropathologica | 2012

Molecular subgroups of medulloblastoma: the current consensus

Michael D. Taylor; Paul A. Northcott; Andrey Korshunov; Marc Remke; Yoon-Jae Cho; Steven C. Clifford; Charles G. Eberhart; D. Williams Parsons; Stefan Rutkowski; Amar Gajjar; David W. Ellison; Peter Lichter; Richard J. Gilbertson; Scott L. Pomeroy; Marcel Kool; Stefan M. Pfister

Medulloblastoma, a small blue cell malignancy of the cerebellum, is a major cause of morbidity and mortality in pediatric oncology. Current mechanisms for clinical prognostication and stratification include clinical factors (age, presence of metastases, and extent of resection) as well as histological subgrouping (classic, desmoplastic, and large cell/anaplastic histology). Transcriptional profiling studies of medulloblastoma cohorts from several research groups around the globe have suggested the existence of multiple distinct molecular subgroups that differ in their demographics, transcriptomes, somatic genetic events, and clinical outcomes. Variations in the number, composition, and nature of the subgroups between studies brought about a consensus conference in Boston in the fall of 2010. Discussants at the conference came to a consensus that the evidence supported the existence of four main subgroups of medulloblastoma (Wnt, Shh, Group 3, and Group 4). Participants outlined the demographic, transcriptional, genetic, and clinical differences between the four subgroups. While it is anticipated that the molecular classification of medulloblastoma will continue to evolve and diversify in the future as larger cohorts are studied at greater depth, herein we outline the current consensus nomenclature, and the differences between the medulloblastoma subgroups.


Journal of Clinical Oncology | 2011

Medulloblastoma Comprises Four Distinct Molecular Variants

Paul A. Northcott; Andrey Korshunov; Hendrik Witt; Thomas Hielscher; Charles G. Eberhart; Stephen C. Mack; Eric Bouffet; Steven C. Clifford; Cynthia Hawkins; Pim J. French; James T. Rutka; Stefan Pfister; Michael D. Taylor

PURPOSE Recent genomic approaches have suggested the existence of multiple distinct subtypes of medulloblastoma. We studied a large cohort of medulloblastomas to determine how many subgroups of the disease exist, how they differ, and the extent of overlap between subgroups. METHODS We determined gene expression profiles and DNA copy number aberrations for 103 primary medulloblastomas. Bioinformatic tools were used for class discovery of medulloblastoma subgroups based on the most informative genes in the data set. Immunohistochemistry for subgroup-specific signature genes was used to determine subgroup affiliation for 294 nonoverlapping medulloblastomas on two independent tissue microarrays. RESULTS Multiple unsupervised analyses of transcriptional profiles identified the following four distinct, nonoverlapping molecular variants: WNT, SHH, group C, and group D. Supervised analysis of these four subgroups revealed significant subgroup-specific demographics, histology, metastatic status, and DNA copy number aberrations. Immunohistochemistry for DKK1 (WNT), SFRP1 (SHH), NPR3 (group C), and KCNA1 (group D) could reliably and uniquely classify formalin-fixed medulloblastomas in approximately 98% of patients. Group C patients (NPR3-positive tumors) exhibited a significantly diminished progression-free and overall survival irrespective of their metastatic status. CONCLUSION Our integrative genomics approach to a large cohort of medulloblastomas has identified four disparate subgroups with distinct demographics, clinical presentation, transcriptional profiles, genetic abnormalities, and clinical outcome. Medulloblastomas can be reliably assigned to subgroups through immunohistochemistry, thereby making medulloblastoma subclassification widely available. Future research on medulloblastoma and the development of clinical trials should take into consideration these four distinct types of medulloblastoma.


Cancer Research | 2006

Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors

Xing Fan; William Matsui; Leila Khaki; Duncan Stearns; Jiong Chun; Yue-Ming Li; Charles G. Eberhart

The Notch signaling pathway is required in both nonneoplastic neural stem cells and embryonal brain tumors, such as medulloblastoma, which are derived from such cells. We investigated the effects of Notch pathway inhibition on medulloblastoma growth using pharmacologic inhibitors of gamma-secretase. Notch blockade suppressed expression of the pathway target Hes1 and caused cell cycle exit, apoptosis, and differentiation in medulloblastoma cell lines. Interestingly, viable populations of better-differentiated cells continued to grow when Notch activation was inhibited but were unable to efficiently form soft-agar colonies or tumor xenografts, suggesting that a cell fraction required for tumor propagation had been depleted. It has recently been hypothesized that a small population of stem-like cells within brain tumors is required for the long-term propagation of neoplastic growth and that CD133 expression and Hoechst dye exclusion (side population) can be used to prospectively identify such tumor-forming cells. We found that Notch blockade reduced the CD133-positive cell fraction almost 5-fold and totally abolished the side population, suggesting that the loss of tumor-forming capacity could be due to the depletion of stem-like cells. Notch signaling levels were higher in the stem-like cell fraction, providing a potential mechanism for their increased sensitivity to inhibition of this pathway. We also observed that apoptotic rates following Notch blockade were almost 10-fold higher in primitive nestin-positive cells as compared with nestin-negative ones. Stem-like cells in brain tumors thus seem to be selectively vulnerable to agents inhibiting the Notch pathway.


Science | 2011

Altered telomeres in tumors with ATRX and DAXX mutations.

Christopher M. Heaphy; Roeland F. De Wilde; Yuchen Jiao; Alison P. Klein; Barish H. Edil; Chanjuan Shi; Chetan Bettegowda; Fausto J. Rodriguez; Charles G. Eberhart; Sachidanand Hebbar; G. Johan A. Offerhaus; Roger E. McLendon; B. Ahmed Rasheed; Yiping He; Hai Yan; Darell D. Bigner; Sueli Mieko Oba-Shinjo; Suely Kazue Nagahashi Marie; Gregory J. Riggins; Kenneth W. Kinzler; Bert Vogelstein; Ralph H. Hruban; Anirban Maitra; Nickolas Papadopoulos; Alan K. Meeker

Chromosome tips seem to be maintained by an unusual mechanism in tumors that have mutations in chromatin remodeling genes. The proteins encoded by ATRX and DAXX participate in chromatin remodeling at telomeres and other genomic sites. Because inactivating mutations of these genes are common in human pancreatic neuroendocrine tumors (PanNETs), we examined the telomere status of these tumors. We found that 61% of PanNETs displayed abnormal telomeres that are characteristic of a telomerase-independent telomere maintenance mechanism termed ALT (alternative lengthening of telomeres). All of the PanNETs exhibiting these abnormal telomeres had ATRX or DAXX mutations or loss of nuclear ATRX or DAXX protein. ATRX mutations also correlate with abnormal telomeres in tumors of the central nervous system. These data suggest that an alternative telomere maintenance function may operate in human tumors with alterations in the ATRX or DAXX genes.


Stem Cells | 2007

Cyclopamine-Mediated Hedgehog Pathway Inhibition Depletes Stem-Like Cancer Cells in Glioblastoma

Eli E. Bar; Aneeka Chaudhry; Alex Lin; Xing Fan; Karisa C. Schreck; William Matsui; Sara Piccirillo; Angelo L. Vescovi; Francesco DiMeco; Alessandro Olivi; Charles G. Eberhart

Brain tumors can arise following deregulation of signaling pathways normally activated during brain development and may derive from neural stem cells. Given the requirement for Hedgehog in non‐neoplastic stem cells, we investigated whether Hedgehog blockade could target the stem‐like population in glioblastoma multiforme (GBM). We found that Gli1, a key Hedgehog pathway target, was highly expressed in 5 of 19 primary GBM and in 4 of 7 GBM cell lines. Shh ligand was expressed in some primary tumors, and in GBM‐derived neurospheres, suggesting a potential mechanism for pathway activation. Hedgehog pathway blockade by cyclopamine caused a 40%–60% reduction in growth of adherent glioma lines highly expressing Gli1 but not in those lacking evidence of pathway activity. When GBM‐derived neurospheres were treated with cyclopamine and then dissociated and seeded in media lacking the inhibitor, no new neurospheres formed, suggesting that the clonogenic cancer stem cells had been depleted. Consistent with this hypothesis, the stem‐like fraction in gliomas marked by both aldehyde dehydrogenase activity and Hoechst dye excretion (side population) was significantly reduced or eliminated by cyclopamine. In contrast, we found that radiation treatment of our GBM neurospheres increased the percentage of these stem‐like cells, suggesting that this standard therapy preferentially targets better‐differentiated neoplastic cells. Most importantly, viable GBM cells injected intracranially following Hedgehog blockade were no longer able to form tumors in athymic mice, indicating that a cancer stem cell population critical for ongoing growth had been removed.


Cancer Research | 2005

Expression of Notch-1 and Its Ligands, Delta-Like-1 and Jagged-1, Is Critical for Glioma Cell Survival and Proliferation

Benjamin W. Purow; Raqeeb M. Haque; M. Noel; Qin Su; Michael J. Burdick; Jeongwu Lee; Tilak Sundaresan; Sandra Pastorino; John K. Park; Irina Mikolaenko; Dragan Maric; Charles G. Eberhart; Howard A. Fine

The Notch family of proteins plays an integral role in determining cell fates, such as proliferation, differentiation, and apoptosis. We show that Notch-1 and its ligands, Delta-like-1 and Jagged-1, are overexpressed in many glioma cell lines and primary human gliomas. Immunohistochemistry of a primary human glioma tissue array shows the presence in the nucleus of the Notch-1 intracellular domain, indicating Notch-1 activation in situ. Down-regulation of Notch-1, Delta-like-1, or Jagged-1 by RNA interference induces apoptosis and inhibits proliferation in multiple glioma cell lines. In addition, pretreatment of glioma cells with Notch-1 or Delta-like-1 small interfering RNA significantly prolongs survival in a murine orthotopic brain tumor model. These results show, for the first time, the dependence of cancer cells on a single Notch ligand; they also suggest a potential Notch juxtacrine/autocrine loop in gliomas. Notch-1 and its ligands may present novel therapeutic targets in the treatment of glioma.


Stem Cells | 2009

NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts

Xing Fan; Leila Khaki; Thant S. Zhu; Mary E. Soules; Caroline E. Talsma; Naheed Gul; Cheryl M. Koh; Jiangyang Zhang; Yue-Ming Li; Jarek Maciaczyk; Guido Nikkhah; Francesco DiMeco; Sara Piccirillo; Angelo L. Vescovi; Charles G. Eberhart

Cancer stem cells (CSCs) are thought to be critical for the engraftment and long‐term growth of many tumors, including glioblastoma (GBM). The cells are at least partially spared by traditional chemotherapies and radiation therapies, and finding new treatments that can target CSCs may be critical for improving patient survival. It has been shown that the NOTCH signaling pathway regulates normal stem cells in the brain, and that GBMs contain stem‐like cells with higher NOTCH activity. We therefore used low‐passage and established GBM‐derived neurosphere cultures to examine the overall requirement for NOTCH activity, and also examined the effects on tumor cells expressing stem cell markers. NOTCH blockade by γ‐secretase inhibitors (GSIs) reduced neurosphere growth and clonogenicity in vitro, whereas expression of an active form of NOTCH2 increased tumor growth. The putative CSC markers CD133, NESTIN, BMI1, and OLIG2 were reduced following NOTCH blockade. When equal numbers of viable cells pretreated with either vehicle (dimethyl sulfoxide) or GSI were injected subcutaneously into nude mice, the former always formed tumors, whereas the latter did not. In vivo delivery of GSI by implantation of drug‐impregnated polymer beads also effectively blocked tumor growth, and significantly prolonged survival, albeit in a relatively small cohort of animals. We found that NOTCH pathway inhibition appears to deplete stem‐like cancer cells through reduced proliferation and increased apoptosis associated with decreased AKT and STAT3 phosphorylation. In summary, we demonstrate that NOTCH pathway blockade depletes stem‐like cells in GBMs, suggesting that GSIs may be useful as chemotherapeutic reagents to target CSCs in malignant gliomas. STEM CELLS 2010;28:5–16


Brain Pathology | 2007

The Neurobiology of Autism

Carlos A. Pardo; Charles G. Eberhart

Improving clinical tests are allowing us to more precisely classify autism spectrum disorders and diagnose them at earlier ages. This raises the possibility of earlier and potentially more effective therapeutic interventions. To fully capitalize on this opportunity, however, will require better understanding of the neurobiological changes underlying this devastating group of developmental disorders. It is becoming clear that the normal trajectory of neurodevelopment is altered in autism, with aberrations in brain growth, neuronal patterning and cortical connectivity. Changes to the structure and function of synapses and dendrites have also been strongly implicated in the pathology of autism by morphological, genetic and animal modeling studies. Finally, environmental factors are likely to interact with the underlying genetic profile, and foster the clinical heterogeneity seen in autism spectrum disorders. In this review we attempt to link the molecular pathways altered in autism to the neurodevelopmental and clinical changes that characterize the disease. We focus on signaling molecules such as neurotrophin, Reelin, PTEN and hepatocyte growth factor, neurotransmitters such as serotonin and glutamate, and synaptic proteins such as neurexin, SHANK and neuroligin. We also discuss evidence implicating oxidative stress, neuroglial activation and neuroimmunity in autism.


Nature Genetics | 2001

Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease.

Chang Hyuk Kwon; Xiaoyan Zhu; Junyuan Zhang; Lori L. Knoop; Ruby Tharp; Richard J. Smeyne; Charles G. Eberhart; Peter C. Burger; Suzanne J. Baker

Somatic inactivation of PTEN occurs in different human tumors including glioblastoma, endometrial carcinoma and prostate carcinoma. Germline mutations in PTEN result in a range of phenotypic abnormalities that occur with variable penetrance, including neurological features such as macrocephaly, seizures, ataxia and Lhermitte-Duclos disease (also described as dysplastic gangliocytoma of the cerebellum). Homozygous deletion of Pten causes embryonic lethality in mice. To investigate function in the brain, we used Cre-loxP technology to selectively inactivate Pten in specific mouse neuronal populations. Loss of Pten resulted in progressive macrocephaly and seizures. Neurons lacking Pten expressed high levels of phosphorylated Akt and showed a progressive increase in soma size without evidence of abnormal proliferation. Cerebellar abnormalities closely resembled the histopathology of human Lhermitte-Duclos disease. These results indicate that Pten regulates neuronal size in vivo in a cell-autonomous manner and provide new insights into the etiology of Lhermitte-Duclos disease.


Cancer Research | 2004

Notch1 and notch2 have opposite effects on embryonal brain tumor growth.

Xing Fan; Irina Mikolaenko; Ihab Elhassan; XingZhi Ni; Yunyue Wang; Douglas W. Ball; Daniel J. Brat; Arie Perry; Charles G. Eberhart

The role of Notch signaling in tumorigenesis can vary; Notch1 acts as an oncogene in some neoplasms, and a tumor suppressor in others. Here, we show that different Notch receptors can have opposite effects in a single tumor type. Expression of truncated, constitutively active Notch1 or Notch2 in embryonal brain tumor cell lines caused antagonistic effects on tumor growth. Cell proliferation, soft agar colony formation, and xenograft growth were all promoted by Notch2 and inhibited by Notch1. We also found that Notch2 receptor transcripts are highly expressed in progenitor cell-derived brain tumors such as medulloblastomas, whereas Notch1 is scarce or undetectable. This parallels normal cerebellar development, during which Notch2 is predominantly expressed in proliferating progenitors and Notch1 in postmitotic differentiating cells. Given the oncogenic effects of Notch2, we analyzed its gene dosage in 40 embryonal brain tumors, detecting an increased copy number in 15% of cases. Notch2 gene amplification was confirmed by fluorescence in situ hybridization in one case with extremely high Notch2 mRNA levels. In addition, expression of the Notch pathway target gene Hes1 in medulloblastomas was associated with significantly shorter patient survival (P = 0.01). Finally, pharmacological inhibition of Notch signaling suppresses growth of medulloblastoma cells. Our data indicate that Notch1 and Notch2 can have opposite effects on the growth of a single tumor type, and show that Notch2 can be overexpressed after gene amplification in human tumors.

Collaboration


Dive into the Charles G. Eberhart's collaboration.

Top Co-Authors

Avatar

Eric Raabe

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fausto J. Rodriguez

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Brent A. Orr

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Laura Asnaghi

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Xing Fan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulf D. Kahlert

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Albert S. Jun

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eli E. Bar

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge