Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles G. Mullighan is active.

Publication


Featured researches published by Charles G. Mullighan.


Nature | 2007

Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia.

Charles G. Mullighan; Salil Goorha; Ina Radtke; Christopher B. Miller; Elaine Coustan-Smith; James Dalton; Kevin Girtman; Susan Mathew; Jing Ma; Stanley Pounds; Xiaoping Su; Ching-Hon Pui; Mary V. Relling; William E. Evans; Sheila A. Shurtleff; James R. Downing

Chromosomal aberrations are a hallmark of acute lymphoblastic leukaemia (ALL) but alone fail to induce leukaemia. To identify cooperating oncogenic lesions, we performed a genome-wide analysis of leukaemic cells from 242 paediatric ALL patients using high-resolution, single-nucleotide polymorphism arrays and genomic DNA sequencing. Our analyses revealed deletion, amplification, point mutation and structural rearrangement in genes encoding principal regulators of B lymphocyte development and differentiation in 40% of B-progenitor ALL cases. The PAX5 gene was the most frequent target of somatic mutation, being altered in 31.7% of cases. The identified PAX5 mutations resulted in reduced levels of PAX5 protein or the generation of hypomorphic alleles. Deletions were also detected in TCF3 (also known as E2A), EBF1, LEF1, IKZF1 (IKAROS) and IKZF3 (AIOLOS). These findings suggest that direct disruption of pathways controlling B-cell development and differentiation contributes to B-progenitor ALL pathogenesis. Moreover, these data demonstrate the power of high-resolution, genome-wide approaches to identify new molecular lesions in cancer.


Nature | 2012

The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.

Jinghui Zhang; Li Ding; Linda Holmfeldt; Gang Wu; Susan L. Heatley; Debbie Payne-Turner; John Easton; Xiang Chen; Jianmin Wang; Michael Rusch; Charles Lu; Shann Ching Chen; Lei Wei; J. Racquel Collins-Underwood; Jing Ma; Kathryn G. Roberts; Stanley Pounds; Anatoly Ulyanov; Jared Becksfort; Pankaj Gupta; Robert Huether; Richard W. Kriwacki; Matthew Parker; Daniel J. McGoldrick; David Zhao; Daniel Alford; Stephen Espy; Kiran Chand Bobba; Guangchun Song; Deqing Pei

Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.


The New England Journal of Medicine | 2009

Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia

Charles G. Mullighan; Xiaoping Su; Jinghui Zhang; Ina Radtke; Letha A. Phillips; Christopher B. Miller; Jing Ma; Wei Liu; Cheng Cheng; Brenda A. Schulman; Richard C. Harvey; I. Ming Chen; Robert J. Clifford; William L. Carroll; Gregory H. Reaman; W. Paul Bowman; Meenakshi Devidas; Daniela S. Gerhard; Wenjian Yang; Mary V. Relling; D. Pharm; Sheila A. Shurtleff; Dario Campana; Michael J. Borowitz; Ching-Hon Pui; Malcolm A. Smith; Stephen P. Hunger; Cheryl L. Willman; James R. Downing

BACKGROUND Despite best current therapy, up to 20% of pediatric patients with acute lymphoblastic leukemia (ALL) have a relapse. Recent genomewide analyses have identified a high frequency of DNA copy-number abnormalities in ALL, but the prognostic implications of these abnormalities have not been defined. METHODS We studied a cohort of 221 children with high-risk B-cell-progenitor ALL with the use of single-nucleotide-polymorphism microarrays, transcriptional profiling, and resequencing of samples obtained at diagnosis. Children with known very-high-risk ALL subtypes (i.e., BCR-ABL1-positive ALL, hypodiploid ALL, and ALL in infants) were excluded from this cohort. A copy-number abnormality was identified as a predictor of poor outcome, and it was then tested in an independent validation cohort of 258 patients with B-cell-progenitor ALL. RESULTS More than 50 recurring copy-number abnormalities were identified, most commonly involving genes that encode regulators of B-cell development (in 66.8% of patients in the original cohort); PAX5 was involved in 31.7% and IKZF1 in 28.6% of patients. Using copy-number abnormalities, we identified a predictor of poor outcome that was validated in the independent validation cohort. This predictor was strongly associated with alteration of IKZF1, a gene that encodes the lymphoid transcription factor IKAROS. The gene-expression signature of the group of patients with a poor outcome revealed increased expression of hematopoietic stem-cell genes and reduced expression of B-cell-lineage genes, and it was similar to the signature of BCR-ABL1-positive ALL, another high-risk subtype of ALL with a high frequency of IKZF1 deletion. CONCLUSIONS Genetic alteration of IKZF1 is associated with a very poor outcome in B-cell-progenitor ALL.


Nature | 2008

BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros.

Charles G. Mullighan; Christopher B. Miller; Ina Radtke; Letha A. Phillips; James T. Dalton; Jing Ma; Deborah L. White; Timothy P. Hughes; Michelle M. Le Beau; Ching-Hon Pui; Mary V. Relling; Sheila A. Shurtleff; James R. Downing

The Philadelphia chromosome, a chromosomal abnormality that encodes BCR–ABL1, is the defining lesion of chronic myelogenous leukaemia (CML) and a subset of acute lymphoblastic leukaemia (ALL). To define oncogenic lesions that cooperate with BCR–ABL1 to induce ALL, we performed a genome-wide analysis of diagnostic leukaemia samples from 304 individuals with ALL, including 43 BCR–ABL1 B-progenitor ALLs and 23 CML cases. IKZF1 (encoding the transcription factor Ikaros) was deleted in 83.7% of BCR–ABL1 ALL, but not in chronic-phase CML. Deletion of IKZF1 was also identified as an acquired lesion at the time of transformation of CML to ALL (lymphoid blast crisis). The IKZF1 deletions resulted in haploinsufficiency, expression of a dominant-negative Ikaros isoform, or the complete loss of Ikaros expression. Sequencing of IKZF1 deletion breakpoints suggested that aberrant RAG-mediated recombination is responsible for the deletions. These findings suggest that genetic lesions resulting in the loss of Ikaros function are an important event in the development of BCR–ABL1 ALL.


Nature Genetics | 2012

Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas

Gang Wu; Alberto Broniscer; Charles Lu; Barbara S. Paugh; Jared Becksfort; Chunxu Qu; Li Ding; Robert Huether; Matthew Parker; Junyuan Zhang; Amar Gajjar; Michael A. Dyer; Charles G. Mullighan; Richard J. Gilbertson; Elaine R. Mardis; Richard Wilson; James R. Downing; David W. Ellison; Jinghui Zhang; Suzanne J. Baker

To identify somatic mutations in pediatric diffuse intrinsic pontine glioma (DIPG), we performed whole-genome sequencing of DNA from seven DIPGs and matched germline tissue and targeted sequencing of an additional 43 DIPGs and 36 non-brainstem pediatric glioblastomas (non-BS-PGs). We found that 78% of DIPGs and 22% of non-BS-PGs contained a mutation in H3F3A, encoding histone H3.3, or in the related HIST1H3B, encoding histone H3.1, that caused a p.Lys27Met amino acid substitution in each protein. An additional 14% of non-BS-PGs had somatic mutations in H3F3A causing a p.Gly34Arg alteration.


Nature Genetics | 2011

Analysis of the coding genome of diffuse large B-cell lymphoma

Laura Pasqualucci; Vladimir Trifonov; Giulia Fabbri; Jing Ma; Davide Rossi; Annalisa Chiarenza; Victoria A. Wells; Adina Grunn; Monica Messina; Oliver Elliot; Joseph Chan; Govind Bhagat; Amy Chadburn; Gianluca Gaidano; Charles G. Mullighan; Raul Rabadan; Riccardo Dalla-Favera

Diffuse large B-cell lymphoma (DLBCL) is the most common form of human lymphoma. Although a number of structural alterations have been associated with the pathogenesis of this malignancy, the full spectrum of genetic lesions that are present in the DLBCL genome, and therefore the identity of dysregulated cellular pathways, remains unknown. By combining next-generation sequencing and copy number analysis, we show that the DLBCL coding genome contains, on average, more than 30 clonally represented gene alterations per case. This analysis also revealed mutations in genes not previously implicated in DLBCL pathogenesis, including those regulating chromatin methylation (MLL2; 24% of samples) and immune recognition by T cells. These results provide initial data on the complexity of the DLBCL coding genome and identify novel dysregulated pathways underlying its pathogenesis.


Science | 2008

GENOMIC ANALYSIS OF THE CLONAL ORIGINS OF RELAPSED ACUTE LYMPHOBLASTIC LEUKEMIA

Charles G. Mullighan; Letha A. Phillips; Xiaoping Su; Jing Ma; Christopher B. Miller; Sheila A. Shurtleff; James R. Downing

Most children with acute lymphoblastic leukemia (ALL) can be cured, but the prognosis is dismal for the minority of patients who relapse after treatment. To explore the genetic basis of relapse, we performed genome-wide DNA copy number analyses on matched diagnosis and relapse samples from 61 pediatric patients with ALL. The diagnosis and relapse samples typically showed different patterns of genomic copy number abnormalities (CNAs), with the CNAs acquired at relapse preferentially affecting genes implicated in cell cycle regulation and B cell development. Most relapse samples lacked some of the CNAs present at diagnosis, which suggests that the cells responsible for relapse are ancestral to the primary leukemia cells. Backtracking studies revealed that cells corresponding to the relapse clone were often present as minor subpopulations at diagnosis. These data suggest that genomic abnormalities contributing to ALL relapse are selected for during treatment, and they point to new targets for therapeutic intervention.


Nature Genetics | 2009

Lin28 promotes transformation and is associated with advanced human malignancies

Srinivas R. Viswanathan; John T. Powers; William S. Einhorn; Yujin Hoshida; Tony Ng; Sara Toffanin; Maureen J. O'Sullivan; Jun Lu; Letha A. Phillips; Victoria L Lockhart; Samar P. Shah; Pradeep S. Tanwar; Craig H. Mermel; Rameen Beroukhim; Mohammad Azam; Jose Teixeira; Matthew Meyerson; Timothy P. Hughes; Josep M. Llovet; Jerald P. Radich; Charles G. Mullighan; Todd R. Golub; Poul H. Sorensen; George Q. Daley

Multiple members of the let-7 family of miRNAs are often repressed in human cancers, thereby promoting oncogenesis by derepressing targets such as HMGA2, K-Ras and c-Myc. However, the mechanism by which let-7 miRNAs are coordinately repressed is unclear. The RNA-binding proteins LIN28 and LIN28B block let-7 precursors from being processed to mature miRNAs, suggesting that their overexpression might promote malignancy through repression of let-7. Here we show that LIN28 and LIN28B are overexpressed in primary human tumors and human cancer cell lines (overall frequency ∼15%), and that overexpression is linked to repression of let-7 family miRNAs and derepression of let-7 targets. LIN28 and LIN28b facilitate cellular transformation in vitro, and overexpression is associated with advanced disease across multiple tumor types. Our work provides a mechanism for the coordinate repression of let-7 miRNAs observed in a subset of human cancers, and associates activation of LIN28 and LIN28B with poor clinical prognosis.


Lancet Oncology | 2009

Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia

Elaine Coustan-Smith; Charles G. Mullighan; Mihaela Onciu; Frederick G. Behm; Susana C. Raimondi; Deqing Pei; Cheng Cheng; Xiaoping Su; Jeffrey E. Rubnitz; Giuseppe Basso; Andrea Biondi; Ching-Hon Pui; James R. Downing; Dario Campana

BACKGROUND About a fifth of children with acute T-lymphoblastic leukaemia (T-ALL) succumb to the disease, suggesting an unrecognised biological heterogeneity that might contribute to drug resistance. We postulated that T-ALL originating from early T-cell precursors (ETPs), a recently defined subset of thymocytes that retain stem-cell-like features, would respond poorly to lymphoid-cell-directed therapy. We studied leukaemic cells, collected at diagnosis, to identify cases with ETP features and determine their clinical outcome. METHODS Leukaemic cells from 239 patients with T-ALL enrolled at St Jude Childrens Research Hospital (n=139) and in the Italian national study Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP) ALL-2000 (n=100) were assessed by gene-expression profiling, flow cytometry, and single nucleotide polymorphism array analysis. Probabilities of survival and treatment failure were calculated for subgroups considered to have ETP-ALL or typical T-ALL. FINDINGS 30 patients (12.6%) had leukaemic lymphoblasts with an ETP-related gene-expression signature or its associated distinctive immunophenotype (CD1a(-), CD8(-), CD5(weak) with stem-cell or myeloid markers). Cases of ETP-ALL showed increased genomic instability, in terms of number and size of gene lesions, compared with those with typical T-ALL. Patients with this form of leukaemia had high risk of remission failure or haematological relapse (72% [95% CI 40-100] at 10 years vs 10% [4-16] at 10 years for patients with typical T-ALL treated at St Jude Childrens Research Hospital; and 57% [25-89] at 2 years vs 14% [6-22] at 2 years for patients treated in the AIEOP trial). INTERPRETATION ETP-ALL is a distinct, previously unrecognised, pathobiological entity that confers a poor prognosis with use of standard intensive chemotherapy. Its early recognition, by use of the gene expression and immunophenotypic criteria outlined here, is essential for the development of an effective clinical management strategy. FUNDING US National Cancer Institute, Cariplo Foundation, Citta della Speranza Foundation, Italian Association for Cancer Research (AIRC), Italian Ministry for University and Research, and American Lebanese Syrian Associated Charities (ALSAC).


Proceedings of the National Academy of Sciences of the United States of America | 2009

JAK mutations in high-risk childhood acute lymphoblastic leukemia

Charles G. Mullighan; Jinghui Zhang; Richard C. Harvey; J. Racquel Collins-Underwood; Brenda A. Schulman; Letha A. Phillips; Sarah K. Tasian; Mignon L. Loh; Xiaoping Su; Wei Liu; Meenakshi Devidas; Susan R. Atlas; I-Ming Chen; Robert J. Clifford; Daniela S. Gerhard; William L. Carroll; Gregory H. Reaman; Malcolm A. Smith; James R. Downing; Stephen P. Hunger; Cheryl L. Willman

Pediatric acute lymphoblastic leukemia (ALL) is a heterogeneous disease consisting of distinct clinical and biological subtypes that are characterized by specific chromosomal abnormalities or gene mutations. Mutation of genes encoding tyrosine kinases is uncommon in ALL, with the exception of Philadelphia chromosome-positive ALL, where the t(9,22)(q34;q11) translocation encodes the constitutively active BCR-ABL1 tyrosine kinase. We recently identified a poor prognostic subgroup of pediatric BCR-ABL1-negative ALL patients characterized by deletion of IKZF1 (encoding the lymphoid transcription factor IKAROS) and a gene expression signature similar to BCR-ABL1-positive ALL, raising the possibility of activated tyrosine kinase signaling within this leukemia subtype. Here, we report activating mutations in the Janus kinases JAK1 (n = 3), JAK2 (n = 16), and JAK3 (n = 1) in 20 (10.7%) of 187 BCR-ABL1-negative, high-risk pediatric ALL cases. The JAK1 and JAK2 mutations involved highly conserved residues in the kinase and pseudokinase domains and resulted in constitutive JAK-STAT activation and growth factor independence of Ba/F3-EpoR cells. The presence of JAK mutations was significantly associated with alteration of IKZF1 (70% of all JAK-mutated cases and 87.5% of cases with JAK2 mutations; P = 0.001) and deletion of CDKN2A/B (70% of all JAK-mutated cases and 68.9% of JAK2-mutated cases). The JAK-mutated cases had a gene expression signature similar to BCR-ABL1 pediatric ALL, and they had a poor outcome. These results suggest that inhibition of JAK signaling is a logical target for therapeutic intervention in JAK mutated ALL.

Collaboration


Dive into the Charles G. Mullighan's collaboration.

Top Co-Authors

Avatar

James R. Downing

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Stephen P. Hunger

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jinghui Zhang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Mignon L. Loh

University of California

View shared research outputs
Top Co-Authors

Avatar

Jing Ma

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Kathryn G. Roberts

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ching-Hon Pui

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge