Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles Gerday is active.

Publication


Featured researches published by Charles Gerday.


Nature Reviews Microbiology | 2003

Psychrophilic enzymes: hot topics in cold adaptation

Georges Feller; Charles Gerday

More than three-quarters of the Earths surface is occupied by cold ecosystems, including the ocean depths, and polar and alpine regions. These permanently cold environments have been successfully colonized by a class of extremophilic microorganisms that are known as psychrophiles (which literally means cold-loving). The ability to thrive at temperatures that are close to, or below, the freezing point of water requires a vast array of adaptations to maintain the metabolic rates and sustained growth compatible with life in these severe environmental conditions.


Trends in Biotechnology | 2000

Cold-adapted enzymes: from fundamentals to biotechnology

Charles Gerday; Mohamed Aittaleb; Mostafa Bentahir; Jean-Pierre Chessa; Paule Claverie; Tony Collins; Salvino D'Amico; Joëlle Dumont; Geneviève Garsoux; Daphné Georlette; Anne Hoyoux; Thierry G. A. Lonhienne; Marie-Alice Meuwis; Georges Feller

Psychrophilic enzymes produced by cold-adapted microorganisms display a high catalytic efficiency and are most often, if not always, associated with high thermosensitivity. Using X-ray crystallography, these properties are beginning to become understood, and the rules governing their adaptation to cold appear to be relatively diverse. The application of these enzymes offers considerable potential to the biotechnology industry, for example, in the detergent and food industries, for the production of fine chemicals and in bioremediation processes.


EMBO Reports | 2006

Psychrophilic microorganisms: challenges for life

Salvino D'Amico; Tony Collins; Jean-Claude Marx; Georges Feller; Charles Gerday

The ability of psychrophiles to survive and proliferate at low temperatures implies that they have overcome key barriers inherent to permanently cold environments. These challenges include: reduced enzyme activity; decreased membrane fluidity; altered transport of nutrients and waste products; decreased rates of transcription, translation and cell division; protein cold‐denaturation; inappropriate protein folding; and intracellular ice formation. Cold‐adapted organisms have successfully evolved features, genotypic and/or phenotypic, to surmount the negative effects of low temperatures and to enable growth in these extreme environments. In this review, we discuss the current knowledge of these adaptations as gained from extensive biochemical and biophysical studies and also from genomics and proteomics.


Cellular and Molecular Life Sciences | 1997

PSYCHROPHILIC ENZYMES : MOLECULAR BASIS OF COLD ADAPTATION

Georges Feller; Charles Gerday

Abstract Psychrophilic organisms have successfully colonized polar and alpine regions and are able to grow efficiently at sub-zero temperatures. At the enzymatic level, such organisms have to cope with the reduction of chemical reaction rates induced by low temperatures in order to maintain adequate metabolic fluxes. Thermal compensation in cold-adapted enzymes is reached through improved turnover number and catalytic efficiency. This optimization of the catalytic parameters can originate from a highly flexible structure which provides enhanced abilities to undergo conformational changes during catalysis. Thermal instability of cold-adapted enzymes is therefore regarded as a consequence of their conformational flexibility. A survey of the psychrophilic enzymes studied so far reveals only minor alterations of the primary structure when compared to mesophilic or thermophilic homologues. However, all known structural factors and weak interactions involved in protein stability are either reduced in number or modified in order to increase their flexibility.


Biochimica et Biophysica Acta | 1997

Psychrophilic enzymes: a thermodynamic challenge

Charles Gerday; Mohamed Aittaleb; Jean Louis Arpigny; Etienne Baise; Jean-Pierre Chessa; Geneviève Garsoux; Ioan Petrescu; Georges Feller

Psychrophilic microorganisms, hosts of permanently cold habitats, produce enzymes which are adapted to work at low temperatures. When compared to their mesophilic counterparts, these enzymes display a higher catalytic efficiency over a temperature range of roughly 0-30 degrees C and a high thermosensitivity. The molecular characteristics of cold enzymes originating from Antarctic bacteria have been approached through protein modelling and X-ray crystallography. The deduced three-dimensional structures of cold alpha-amylase, beta-lactamase, lipase and subtilisin have been compared to their mesophilic homologs. It appears that the molecular adaptation resides in a weakening of the intramolecular interactions, and in some cases in an increase of the interaction with the solvent, leading to more flexible molecular edifices capable of performing catalysis at a lower energy cost.


Biochimica et Biophysica Acta | 2000

Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility.

Thierry G. A. Lonhienne; Charles Gerday; Georges Feller

Basic theoretical and practical aspects of activation parameters are briefly reviewed in the context of cold-adaptation. In order to reduce the error impact inherent to the transition state theory on the absolute values of the free energy (DeltaG(#)), enthalpy (DeltaH(#)) and entropy (DeltaS(#)) of activation, it is proposed to compare the variation of these parameters between psychrophilic and mesophilic enzymes, namely Delta(DeltaG(#))(p-m), Delta(DeltaH(#))(p-m) and Delta(DeltaS(#))(p-m). Calculation of these parameters from the available literature shows that the main adaptation of psychrophilic enzymes lies in a significant decrease of DeltaH(#), therefore leading to a higher k(cat), especially at low temperatures. Moreover, in all cases including cold-blooded animals, DeltaS(#) exerts an opposite and negative effect on the gain in k(cat). It is argued that the magnitude of this counter-effect of DeltaS(#) can be reduced by keeping some stable domains, while increasing the flexibility of the structures required to improve catalysis at low temperature, as demonstrated in several cold-active enzymes. This enthalpic-entropic balance provides a new approach explaining the two types of conformational stability detected by recent microcalorimetric experiments on psychrophilic enzymes.


Structure | 1998

Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level

Nushin Aghajari; Georges Feller; Charles Gerday; Richard Haser

BACKGROUND . Enzymes from psychrophilic (cold-adapted) microorganisms operate at temperatures close to 0 degreesC, where the activity of their mesophilic and thermophilic counterparts is drastically reduced. It has generally been assumed that thermophily is associated with rigid proteins, whereas psychrophilic enzymes have a tendency to be more flexible. RESULTS . Insights into the cold adaptation of proteins are gained on the basis of a psychrophilic proteins molecular structure. To this end, we have determined the structure of the recombinant form of a psychrophilic alpha-amylase from Alteromonas haloplanctis at 2.4 A resolution. We have compared this with the structure of the wild-type enzyme, recently solved at 2.0 A resolution, and with available structures of their mesophilic counterparts. These comparative studies have enabled us to identify possible determinants of cold adaptation. CONCLUSIONS . We propose that an increased resilience of the molecular surface and a less rigid protein core, with less interdomain interactions, are determining factors of the conformational flexibility that allows efficient enzyme catalysis in cold environments.


Journal of Biological Chemistry | 2002

A novel family 8 xylanase, functional and physicochemical characterization

Tony Collins; Marie-Alice Meuwis; Ingeborg Stals; Marc Claeyssens; Georges Feller; Charles Gerday

Xylanases are generally classified into glycosyl hydrolase families 10 and 11 and are found to frequently have an inverse relationship between their pI and molecular mass values. However, we have isolated a psychrophilic xylanase that belongs to family 8 and which has both a high pI and high molecular mass. This novel xylanase, isolated from the Antarctic bacteriumPseudoalteromonas haloplanktis, is not homologous to family 10 or 11 enzymes but has 20–30% identity with family 8 members. NMR analysis shows that this enzyme hydrolyzes with inversion of anomeric configuration, in contrast to other known xylanases which are retaining. No cellulase, chitosanase or lichenase activity was detected. It appears to be functionally similar to family 11 xylanases. It hydrolyzes xylan to principally xylotriose and xylotetraose and is most active on long chain xylo-oligosaccharides. Kinetic studies indicate that it has a large substrate binding cleft, containing at least six xylose-binding subsites. Typical psychrophilic characteristics of a high catalytic activity at low temperatures and low thermal stability are observed. An evolutionary tree of family 8 enzymes revealed the presence of six distinct clusters. Indeed classification in family 8 would suggest an (α/α)6fold, distinct from that of other currently known xylanases.


Applied and Environmental Microbiology | 2001

Cold-Adapted Beta-Galactosidase from the Antarctic Psychrophile Pseudoalteromonas Haloplanktis

Anne Hoyoux; I. Jennes; Philippe Dubois; Sabine Genicot; F. Dubail; Jean-Marie François; Etienne Baise; Georges Feller; Charles Gerday

ABSTRACT The β-galactosidase from the Antarctic gram-negative bacteriumPseudoalteromonas haloplanktis TAE 79 was purified to homogeneity. The nucleotide sequence and the NH2-terminal amino acid sequence of the purified enzyme indicate that the β-galactosidase subunit is composed of 1,038 amino acids with a calculated Mr of 118,068. This β-galactosidase shares structural properties with Escherichia coli β-galactosidase (comparable subunit mass, 51% amino sequence identity, conservation of amino acid residues involved in catalysis, similar optimal pH value, and requirement for divalent metal ions) but is characterized by a higher catalytic efficiency on synthetic and natural substrates and by a shift of apparent optimum activity toward low temperatures and lower thermal stability. The enzyme also differs by a higher pI (7.8) and by specific thermodynamic activation parameters. P. haloplanktis β-galactosidase was expressed in E. coli, and the recombinant enzyme displays properties identical to those of the wild-type enzyme. Heat-induced unfolding monitored by intrinsic fluorescence spectroscopy showed lower melting point values for both P. haloplanktiswild-type and recombinant β-galactosidase compared to the mesophilic enzyme. Assays of lactose hydrolysis in milk demonstrate that P. haloplanktis β-galactosidase can outperform the current commercial β-galactosidase from Kluyveromyces marxianusvar. lactis, suggesting that the cold-adapted β-galactosidase could be used to hydrolyze lactose in dairy products processed in refrigerated plants.


Journal of Biological Chemistry | 2003

Structural and Functional Adaptations to Extreme Temperatures in Psychrophilic, Mesophilic, and Thermophilic DNA Ligases

Daphné Georlette; Benjamin Damien; Vinciane Blaise; Eric Depiereux; Vladimir N. Uversky; Charles Gerday; Georges Feller

Psychrophiles, host of permanently cold habitats, display metabolic fluxes comparable to those exhibited by mesophilic organisms at moderate temperatures. These organisms have evolved by producing, among other peculiarities, cold-active enzymes that have the properties to cope with the reduction of chemical reaction rates induced by low temperatures. The emerging picture suggests that these enzymes display a high catalytic efficiency at low temperatures through an improved flexibility of the structural components involved in the catalytic cycle, whereas other protein regions, if not implicated in catalysis, may be even more rigid than their mesophilic counterparts. In return, the increased flexibility leads to a decreased stability of psychrophilic enzymes. In order to gain further advances in the analysis of the activity/flexibility/stability concept, psychrophilic, mesophilic, and thermophilic DNA ligases have been compared by three-dimensional-modeling studies, as well as regards their activity, surface hydrophobicity, structural permeability, conformational stabilities, and irreversible thermal unfolding. These data show that the cold-adapted DNA ligase is characterized by an increased activity at low and moderate temperatures, an overall destabilization of the molecular edifice, especially at the active site, and a high conformational flexibility. The opposite trend is observed in the mesophilic and thermophilic counterparts, the latter being characterized by a reduced low temperature activity, high stability and reduced flexibility. These results strongly suggest a complex relationship between activity, flexibility and stability. In addition, they also indicate that in cold-adapted enzymes, the driving force for denaturation is a large entropy change.

Collaboration


Dive into the Charles Gerday's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge