Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles Ginther is active.

Publication


Featured researches published by Charles Ginther.


The EMBO Journal | 1998

A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers

James R. Bischoff; Lee Anderson; Yingfang Zhu; Kevin Mossie; Lelia Ng; Brian Souza; Brian Schryver; Peter Flanagan; Felix Clairvoyant; Charles Ginther; Clarence S.M. Chan; Mike Novotny; Dennis J. Slamon; Gregory D. Plowman

Genetic and biochemical studies in lower eukaryotes have identified several proteins that ensure accurate segregation of chromosomes. These include the Drosophila aurora and yeast Ipl1 kinases that are required for centrosome maturation and chromosome segregation. We have identified two human homologues of these genes, termed aurora1 and aurora2, that encode cell‐cycle‐regulated serine/threonine kinases. Here we demonstrate that the aurora2 gene maps to chromosome 20q13, a region amplified in a variety of human cancers, including a significant number of colorectal malignancies. We propose that aurora2 may be a target of this amplicon since its DNA is amplified and its RNA overexpressed, in more than 50% of primary colorectal cancers. Furthermore, overexpression of aurora2 transforms rodent fibroblasts. These observations implicate aurora2 as a potential oncogene in many colon, breast and other solid tumors, and identify centrosome‐associated proteins as novel targets for cancer therapy.


Breast Cancer Research | 2009

PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro

Richard S. Finn; Judy Dering; Dylan Conklin; Ondrej Kalous; David Cohen; Amrita J. Desai; Charles Ginther; Mohammad Atefi; Isan Chen; Camilla Fowst; Gerret Los; Dennis J. Slamon

IntroductionAlterations in cell cycle regulators have been implicated in human malignancies including breast cancer. PD 0332991 is an orally active, highly selective inhibitor of the cyclin D kinases (CDK)4 and CDK6 with ability to block retinoblastoma (Rb) phosphorylation in the low nanomolar range. To identify predictors of response, we determined the in vitro sensitivity to PD 0332991 across a panel of molecularly characterized human breast cancer cell lines.MethodsForty-seven human breast cancer and immortalized cell lines representing the known molecular subgroups of breast cancer were treated with PD 0332991 to determine IC50 values. These data were analyzed against baseline gene expression data to identify genes associated with PD 0332991 response.ResultsCell lines representing luminal estrogen receptor-positive (ER+) subtype (including those that are HER2 amplified) were most sensitive to growth inhibition by PD 0332991 while nonluminal/basal subtypes were most resistant. Analysis of variance identified 450 differentially expressed genes between sensitive and resistant cells. pRb and cyclin D1 were elevated and CDKN2A (p16) was decreased in the most sensitive lines. Cell cycle analysis showed G0/G1 arrest in sensitive cell lines and Western blot analysis demonstrated that Rb phosphorylation is blocked in sensitive lines but not resistant lines. PD 0332991 was synergistic with tamoxifen and trastuzumab in ER+ and HER2-amplified cell lines, respectively. PD 0332991 enhanced sensitivity to tamoxifen in cell lines with conditioned resistance to ER blockade.ConclusionsThese studies suggest a role for CDK4/6 inhibition in some breast cancers and identify criteria for patient selection in clinical studies of PD 0332991.


Molecular Cancer Therapeutics | 2010

Activated Phosphoinositide 3-Kinase/AKT Signaling Confers Resistance to Trastuzumab but not Lapatinib

Neil A. O'Brien; Brigid C. Browne; Lucy Chow; Yuhua Wang; Charles Ginther; Jane Arboleda; Michael J. Duffy; John Crown; Norma O'Donovan; Dennis J. Slamon

Trastuzumab and lapatinib provide clinical benefit to women with human epidermal growth factor receptor 2 (HER)–positive breast cancer. However, not all patients whose tumors contain the HER2 alteration respond. Consequently, there is an urgent need to identify new predictive factors for these agents. The aim of this study was to investigate the role of receptor tyrosine kinase signaling and phosphoinositide 3-kinase (PI3K)/AKT pathway activation in conferring resistance to trastuzumab and lapatinib. To address this question, we evaluated response to trastuzumab and lapatinib in a panel of 18 HER2-amplified cell lines, using both two- and three-dimensional culture. The SUM-225, HCC-1419, HCC-1954, UACC-893, HCC-1569, UACC-732, JIMT-1, and MDA-453 cell lines were found to be innately resistant to trastuzumab, whereas the MDA-361, MDA-453, HCC-1569, UACC-732, JIMT-1, HCC-202, and UACC-893 cells are innately lapatinib resistant. Lapatinib was active in de novo (SUM-225, HCC-1419, and HCC-1954) and in a BT-474 cell line with acquired resistance to trastuzumab. In these cells, trastuzumab had little effect on AKT phosphorylation, whereas lapatinib retained activity through the dephosphorylation of AKT. Increased phosphorylation of HER2, epidermal growth factor receptor, HER3, and insulin-like growth factor IR correlated with response to lapatinib but not trastuzumab. Loss of PTEN or the presence of activating mutations in PI3K marked resistance to trastuzumab, but lapatinib response was independent of these factors. Thus, increased activation of the PI3K/AKT pathway correlates with resistance to trastuzumab, which can be overcome by lapatinib. In conclusion, pharmacologic targeting of the PI3K/AKT pathway may provide benefit to HER2-positive breast cancer patients who are resistant to trastuzumab therapy. Mol Cancer Ther; 9(6); 1489–502. ©2010 AACR.


Clinical Cancer Research | 2011

Expression of p16 and Retinoblastoma Determines Response to CDK4/6 Inhibition in Ovarian Cancer

Gottfried E. Konecny; Boris Winterhoff; Teodora Kolarova; Jingwei Qi; Kanthinh Manivong; Judy Dering; Guorong Yang; Meenal Chalukya; He-Jing Wang; Lee Anderson; Kimberly R. Kalli; Richard S. Finn; Charles Ginther; Siân Jones; Victor E. Velculescu; Darren L. Riehle; William A. Cliby; Sophia Randolph; Maria Koehler; Lynn C. Hartmann; Dennis J. Slamon

Purpose: PD-0332991 is a selective inhibitor of the CDK4/6 kinases with the ability to block retinoblastoma (Rb) phosphorylation in the low nanomolar range. Here we investigate the role of CDK4/6 inhibition in human ovarian cancer. Experimental Design: We examined the effects of PD-0332991 on proliferation, cell-cycle, apoptosis, and Rb phosphorylation using a panel of 40 established human ovarian cancer cell lines. Molecular markers for response prediction, including p16 and Rb, were studied using gene expression profiling, Western blot, and array CGH. Multiple drug effect analysis was used to study interactions with chemotherapeutic drugs. Expression of p16 and Rb was studied using immunohistochemistry in a large clinical cohort of ovarian cancer patients. Results: Concentration-dependent antiproliferative effects of PD-0332991 were seen in all ovarian cancer cell lines, but varied significantly between individual lines. Rb-proficient cell lines with low p16 expression were most responsive to CDK4/6 inhibition. Copy number variations of CDKN2A, RB, CCNE1, and CCND1 were associated with response to PD-0332991. CDK4/6 inhibition induced G0/G1 cell cycle arrest, blocked Rb phosphorylation in a concentration-and time-dependent manner, and enhanced the effects of chemotherapy. Rb-proficiency with low p16 expression was seen in 97/262 (37%) of ovarian cancer patients and was independently associated with poor progression-free survival (adjusted relative risk 1.49, 95% CI 1.00–2.24, P = 0.052). Conclusions: PD-0332991 shows promising biologic activity in ovarian cancer cell lines. Assessment of Rb and p16 expression may help select patients most likely to benefit from CDK4/6 inhibition in ovarian cancer. Clin Cancer Res; 17(6); 1591–602. ©2011 AACR.


Journal of the National Cancer Institute | 2014

Prognostic and Therapeutic Relevance of Molecular Subtypes in High-Grade Serous Ovarian Cancer

Gottfried E. Konecny; Chen Wang; Habib Hamidi; Boris Winterhoff; Kimberly R. Kalli; Judy Dering; Charles Ginther; Hsiao Wang Chen; Sean C. Dowdy; William A. Cliby; Bobbie S. Gostout; Karl C. Podratz; Gary L. Keeney; He-Jing Wang; Lynn C. Hartmann; Dennis J. Slamon; Ellen L. Goode

Molecular classification of high-grade serous ovarian cancer (HGSOC) using transcriptional profiling has proven to be complex and difficult to validate across studies. We determined gene expression profiles of 174 well-annotated HGSOCs and demonstrate prognostic significance of the prespecified TCGA Network gene signatures. Furthermore, we confirm the presence of four HGSOC transcriptional subtypes using a de novo classification. Survival differed statistically significantly between de novo subtypes (log rank, P = .006) and was the best for the immunoreactive-like subtype, but statistically significantly worse for the proliferative- or mesenchymal-like subtypes (adjusted hazard ratio = 1.89, 95% confidence interval = 1.18 to 3.02, P = .008, and adjusted hazard ratio = 2.45, 95% confidence interval = 1.43 to 4.18, P = .001, respectively). More prognostic information was provided by the de novo than the TCGA classification (Likelihood Ratio tests, P = .003 and P = .04, respectively). All statistical tests were two-sided. These findings were replicated in an external data set of 185 HGSOCs and confirm the presence of four prognostically relevant molecular subtypes that have the potential to guide therapy decisions.


Molecular Cancer Research | 2012

Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab resistant HER2-overexpressing breast cancer cells

Yanyuan Wu; Charles Ginther; Juri Kim; Nicole Mosher; Seyung Chung; Dennis J. Slamon; Jaydutt V. Vadgama

To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors, we created trastuzumab-insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression and show increase in EGF receptor (EGFR). Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab-resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab-resistant cells also promoted a partial EMT-like transition (epithelial-to-mesenchymal transition); increased N-cadherin, Twist, Slug; and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin and decreased EGFR expression in trastuzumab-resistant cells. Furthermore, the EMT markers were decreased, E-cadherin was increased, and the cell invasiveness was inhibited in response to the Wnt3 downregulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist, and Slug. The cells were less sensitive to trastuzumab than parental SKBR3 and vector-transfected cells. In summary, our data suggest that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2-overexpressing breast cancer cells. Mol Cancer Res; 10(12); 1597–606. ©2012 AACR.


Oncogene | 2013

FOXA1 Represses the Molecular Phenotype of Basal Breast Cancer Cells

Gina M. Bernardo; Gurkan Bebek; Charles Ginther; Steven T. Sizemore; Kristen L. Lozada; John Miedler; Lee Anderson; Andrew K. Godwin; Fadi W. Abdul-Karim; Dennis J. Slamon; Ruth A. Keri

Breast cancer is a heterogeneous disease that comprises multiple subtypes. Luminal subtype tumors confer a more favorable patient prognosis, which is, in part, attributed to estrogen receptor (ER)-α positivity and antihormone responsiveness. Expression of the forkhead box transcription factor, FOXA1, similarly correlates with the luminal subtype and patient survival, but is also present in a subset of ER-negative tumors. FOXA1 is also consistently expressed in luminal breast cancer cell lines even in the absence of ER. In contrast, breast cancer cell lines representing the basal subtype do not express FOXA1. To delineate an ER-independent role for FOXA1 in maintaining the luminal phenotype, and hence a more favorable prognosis, we performed expression microarray analyses on FOXA1-positive and ER-positive (MCF7, T47D), or FOXA1-positive and ER-negative (MDA-MB-453, SKBR3) luminal cell lines in the presence or absence of transient FOXA1 silencing. This resulted in three FOXA1 transcriptomes: (1) a luminal signature (consistent across cell lines), (2) an ER-positive signature (restricted to MCF7 and T47D) and (3) an ER-negative signature (restricted to MDA-MB-453 and SKBR3). Gene set enrichment analyses revealed FOXA1 silencing causes a partial transcriptome shift from luminal to basal gene expression signatures. FOXA1 binds to a subset of both luminal and basal genes within luminal breast cancer cells, and loss of FOXA1 increases enhancer RNA transcription for a representative basal gene (CD58). These data suggest FOXA1 directly represses a subset of basal signature genes. Functionally, FOXA1 silencing increases migration and invasion of luminal cancer cells, both of which are characteristics of basal subtype cells. We conclude FOXA1 controls plasticity between basal and luminal breast cancer cells, not only by inducing luminal genes but also by repressing the basal phenotype, and thus aggressiveness. Although it has been proposed that FOXA1-targeting agents may be useful for treating luminal tumors, these data suggest that this approach may promote transitions toward more aggressive cancers.


Gynecologic Oncology | 2010

Periostin promotes ovarian cancer angiogenesis and metastasis

Min Zhu; Marlena S. Fejzo; Lee Anderson; Judy Dering; Charles Ginther; Lillian Ramos; Judith C. Gasson; Beth Y. Karlan; Dennis J. Slamon

OBJECTIVE Perostin (PN) has been found to be overexpressed in a variety of human malignancies including ovarian cancer. In the present study, we investigated PN expression status in a large cohort of ovarian tumors with the focus on biological influence of PN related on ovarian tumor angiogenesis and metastasis. METHODS PN expression was determined by cDNA microarray, PN northern blot and PN IHC tissue array analyses. Exogenous PN expression in ovarian cancer cells OVCAR-3 and OV2008 were achieved through retroviral transfection and confirmed by PN western blot and ELISA. The effects of exogenous PN expression on tumor angiogenesis and metastatic growth were accessed in orthotopic mouse models. The in vitro cell adhesion, migration and invasion assays were performed to investigate the potential mechanisms involved in PNs in vivo effects. RESULTS PN was frequently overexpressed in ovarian tumors. Higher PN levels significantly correlated with clinical late stages (III/IV) and cancer recurrence. PN was produced by engineered PN-overexpressing cells at levels comparable to that of A2780 cells, an ovarian carcinoma cell line with endogenous PN expression. PN overexpression did not change cell growth rates in vitro; however it significantly promoted intraperitoneal tumor metastatic growth in immunodeficient mice, which was associated with increased tumor angiogenesis and decreased tumor cell apoptosis. In vitro purified PN promoted cell adhesion, migration, and invasion of both human umbilical endothelial cells (HUVECs) and/or ovarian cancer cells. CONCLUSIONS Our data indicate PN plays a critical role in both ovarian tumor angiogenesis and metastasis. Thus PN may represent a clinically effective new target for therapy of ovarian cancer.


British Journal of Cancer | 2009

Activity of the multikinase inhibitor dasatinib against ovarian cancer cells

Gottfried E. Konecny; Ruth Glas; Judy Dering; Kanthinh Manivong; Jingwei Qi; Richard S. Finn; George R Yang; K-L Hong; Charles Ginther; Boris Winterhoff; Geng Gao; Joan S. Brugge; Dennis J. Slamon

Background:Here, we explore the therapeutic potential of dasatinib, a small-molecule inhibitor that targets multiple cytosolic and membrane-bound tyrosine kinases, including members of the Src kinase family, EphA2, and focal adhesion kinase for the treatment of ovarian cancer.Methods:We examined the effects of dasatinib on proliferation, invasion, apoptosis, cell-cycle arrest, and kinase activity using a panel of 34 established human ovarian cancer cell lines. Molecular markers for response prediction were studied using gene expression profiling. Multiple drug effect/combination index (CI) isobologram analysis was used to study the interactions with chemotherapeutic drugs.Results:Concentration-dependent anti-proliferative effects of dasatinib were seen in all ovarian cancer cell lines tested, but varied significantly between individual cell lines with up to a 3 log-fold difference in the IC50 values (IC50 range: 0.001–11.3 μmol l−1). Dasatinib significantly inhibited invasion, and induced cell apoptosis, but less cell-cycle arrest. At a wide range of clinically achievable drug concentrations, additive and synergistic interactions were observed for dasatinib plus carboplatin (mean CI values, range: 0.73–1.11) or paclitaxel (mean CI values, range: 0.76–1.05). In this study, 24 out of 34 (71%) representative ovarian cancer cell lines were highly sensitive to dasatinib, compared with only 8 out of 39 (21%) representative breast cancer cell lines previously reported. Cell lines with high expression of Yes, Lyn, Eph2A, caveolin-1 and 2, moesin, annexin-1, and uPA were particularly sensitive to dasatinib.Conclusions:These data provide a clear biological rationale to test dasatinib as a single agent or in combination with chemotherapy in patients with ovarian cancer.


Journal of Clinical Oncology | 2008

ERCC5 Is a Novel Biomarker of Ovarian Cancer Prognosis

C. Walsh; Seishi Ogawa; Hisae Karahashi; Daniel R. Scoles; James C. Pavelka; Hang Tran; Carl W. Miller; Norihiko Kawamata; Charles Ginther; Judy Dering; Masashi Sanada; Yasuhito Nannya; Dennis J. Slamon; H. Phillip Koeffler; Beth Y. Karlan

PURPOSE To identify a biomarker of ovarian cancer response to chemotherapy. PATIENTS AND METHODS Study: participants had epithelial ovarian cancer treated with surgery followed by platinum-based chemotherapy. DNA and RNA were isolated from frozen tumors and normal DNA was isolated from matched peripheral blood. A whole-genome loss of heterozygosity (LOH) analysis was performed using a high-density oligonucleotide array. Candidate genomic areas that predicted enhanced response to chemotherapy were identified with Cox proportional hazards methods. Gene expression analyses were performed through microarray experiments. Candidate genes were tested for independent effects on survival using Cox proportional hazards models, Kaplan-Meier survival curves, and the log-rank test. RESULTS Using a whole-genome approach to study the molecular determinants of ovarian cancer response to platinum-based chemotherapy, we identified LOH of a 13q region to predict prolonged progression-free survival (PFS; hazard ratio, 0.23; P = .006). ERCC5 was identified as a candidate gene in this region because of its known function in the nucleotide excision repair pathway, the unique DNA repair pathway that removes platinum-DNA adducts. We found LOH of the ERCC5 gene locus and downregulation of ERCC5 gene expression to predict prolonged PFS. Integration of genomic and gene expression data shows a correlation between 13q LOH and ERCC5 gene downregulation. CONCLUSION ERCC5 is a novel biomarker of ovarian cancer prognosis and a potential therapeutic target of ovarian cancer response to platinum chemotherapy.

Collaboration


Dive into the Charles Ginther's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judy Dering

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard S. Finn

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Lee Anderson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dylan Conklin

University of California

View shared research outputs
Top Co-Authors

Avatar

Edwin A. Clark

University of California

View shared research outputs
Top Co-Authors

Avatar

Habib Hamidi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ondrej Kalous

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge