Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles Hachez is active.

Publication


Featured researches published by Charles Hachez.


Plant Physiology | 2009

Drought and Abscisic Acid Effects on Aquaporin Content Translate into Changes in Hydraulic Conductivity and Leaf Growth Rate: A Trans-Scale Approach

Boris Parent; Charles Hachez; Elise Redondo; Thierry Simonneau; François Chaumont; François Tardieu

The effects of abscisic acid (ABA) on aquaporin content, root hydraulic conductivity (Lpr), whole plant hydraulic conductance, and leaf growth are controversial. We addressed these effects via a combination of experiments at different scales of plant organization and tested their consistency via a model. We analyzed under moderate water deficit a series of transformed maize (Zea mays) lines, one sense and three antisense, affected in NCED (for 9-cis-epoxycarotenoid dioxygenase) gene expression and that differed in the concentration of ABA in the xylem sap. In roots, the mRNA expression of most aquaporin PIP (for plasma membrane intrinsic protein) genes was increased in sense plants and decreased in antisense plants. The same pattern was observed for the protein contents of four PIPs. This resulted in more than 6-fold differences between lines in Lpr under both hydrostatic and osmotic gradients of water potential. This effect was probably due to differences in aquaporin activity, because it was nearly abolished by a hydrogen peroxide treatment, which blocks the water channel activity of aquaporins. The hydraulic conductance of intact whole plants was affected in the same way when measured either in steady-state conditions or via the rate of recovery of leaf water potential after rewatering. The recoveries of leaf water potential and elongation upon rehydration differed between lines and were accounted for by the experimentally measured Lpr in a model of water transfer. Overall, these results suggest that ABA has long-lasting effects on plant hydraulic properties via aquaporin activity, which contributes to the maintenance of a favorable plant water status.


Plant Molecular Biology | 2008

The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation.

Charles Hachez; Robert B. Heinen; Xavier Draye; François Chaumont

Leaves are key organs for evaporation and photosynthesis and play a crucial role in plant growth and development. In order to function properly, they need to maintain a balanced water content. Water movement through a leaf occurs by a combination of different pathways: water can follow an apoplastic route through the cell wall or a cell-to-cell route via the symplastic and transcellular paths. As aquaporins (AQPs) play an important role in regulating transcellular water flow and CO2 conductance, studies on AQP mRNA and protein expression in leaves are essential to better understand their role in these physiological processes. Here, we quantified and localized the expression of Zea mays plasma membrane aquaporins (ZmPIPs, plasma membrane intrinsic proteins) in the leaf using quantitative RT-PCR and immunodetection. All ZmPIP genes except ZmPIP2;7 were expressed in leaves. Expression was found to be dependent on the developmental stage of the leaf tissue, with, in general, an increase in expression at the end of the elongation zone and a decrease in mature leaf tissue. These data correlated with the cell water permeability, as determined using a protoplast swelling assay. The diurnal expression of ZmPIPs was also investigated and expression was found to be higher during the first hours of the light period than at night. Immunocytochemical localization of four ZmPIP isoforms indicated that they are involved in leaf radial water movement, in particular in vascular bundles and the mesophyll.


Trends in Plant Science | 2013

Insights into plant plasma membrane aquaporin trafficking.

Charles Hachez; Arnaud Besserer; Adrien S. Chevalier; François Chaumont

Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance.


The Plant Cell | 2014

Arabidopsis SNAREs SYP61 and SYP121 Coordinate the Trafficking of Plasma Membrane Aquaporin PIP2;7 to Modulate the Cell Membrane Water Permeability

Charles Hachez; Timothée Laloux; Hagen Reinhardt; Damien Cavez; Hervé Degand; Christopher Grefen; Riet De Rycke; Dirk Inzé; Michael R. Blatt; Eugenia Russinova; François Chaumont

This work shows that the post-Golgi trafficking of PIP2;7 involves an interaction with SYP61 and SYP121 and that SYP61 and SYP121 colocalize and are physically associated in a SNARE complex. These findings suggest that SNAREs, and possibly a SYP61/SYP121 SNARE complex, play an important role in the regulation of the transport of the plasma membrane aquaporin. Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane.


The Plant Cell | 2014

The Arabidopsis Abiotic Stress-Induced TSPO-Related Protein Reduces Cell-Surface Expression of the Aquaporin PIP2;7 through Protein-Protein Interactions and Autophagic Degradation

Charles Hachez; Vasko Veljanovski; Hagen Reinhardt; Damien Guillaumot; Celine Vanhee; François Chaumont; Henri Batoko

Expression of a plasma membrane aquaporin is regulated by an abiotic stress-induced protein via intracellular protein-protein interactions and targeting of the aquaporin for autophagic degradation. The Arabidopsis thaliana multi-stress regulator TSPO is transiently induced by abiotic stresses. The final destination of this polytopic membrane protein is the Golgi apparatus, where its accumulation is strictly regulated, and TSPO is downregulated through a selective autophagic pathway. TSPO-related proteins regulate the physiology of the cell by generating functional protein complexes. A split-ubiquitin screen for potential TSPO interacting partners uncovered a plasma membrane aquaporin, PIP2;7. Pull-down assays and fluorescence imaging approaches revealed that TSPO physically interacts with PIP2;7 at the endoplasmic reticulum and Golgi membranes in planta. Intriguingly, constitutive expression of fluorescently tagged PIP2;7 in TSPO-overexpressing transgenic lines resulted in patchy distribution of the fluorescence, reminiscent of the pattern of constitutively expressed yellow fluorescent protein-TSPO in Arabidopsis. Mutational stabilization of TSPO or pharmacological inhibition of the autophagic pathway affected concomitantly the detected levels of PIP2;7, suggesting that the complex containing both proteins is degraded through the autophagic pathway. Coexpression of TSPO and PIP2;7 resulted in decreased levels of PIP2;7 in the plasma membrane and abolished the membrane water permeability mediated by transgenic PIP2;7. Taken together, these data support a physiological role for TSPO in regulating the cell-surface expression of PIP2;7 during abiotic stress conditions through protein-protein interaction and demonstrate an aquaporin regulatory mechanism involving TSPO.


Developmental Cell | 2015

Transcriptome dynamics of the stomatal lineage: birth, amplification and termination of a self-renewing population

Jessika Adrian; Jessica Chang; Catherine E. Ballenger; Bastiaan O. R. Bargmann; Julien Alassimone; Kelli A. Davies; On Sun Lau; Juliana L. Matos; Charles Hachez; Amy Lanctot; Anne Vatén; Kenneth D. Birnbaum; Dominique C. Bergmann

Developmental transitions can be described in terms of morphology and the roles of individual genes, but also in terms of global transcriptional and epigenetic changes. Temporal dissections of transcriptome changes, however, are rare for intact, developing tissues. We used RNA sequencing and microarray platforms to quantify gene expression from labeled cells isolated by fluorescence-activated cell sorting to generate cell-type-specific transcriptomes during development of an adult stem-cell lineage in the Arabidopsis leaf. We show that regulatory modules in this early lineage link cell types that had previously been considered to be under separate control and provide evidence for recruitment of individual members of gene families for different developmental decisions. Because stomata are physiologically important and because stomatal lineage cells exhibit exemplary division, cell fate, and cell signaling behaviors, this dataset serves as a valuable resource for further investigations of fundamental developmental processes.


Plant Physiology | 2011

Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA.

Charles Hachez; Kyoko Ohashi-Ito; Juan Dong; Dominique C. Bergmann

Nearly all extant land plants possess stomata, the epidermal structures that mediate gas exchange between the plant and the environment. The developmental pathways, cell division patterns, and molecules employed in the generation of these structures are simple examples of processes used in many developmental contexts. One specific module is a set of “master regulator” basic helix-loop-helix transcription factors that regulate individual consecutive steps in stomatal development. Here, we profile transcriptional changes in response to inducible expression of Arabidopsis (Arabidopsis thaliana) FAMA, a basic helix-loop-helix protein whose actions during the final stage in stomatal development regulate both cell division and cell fate. Genes identified by microarray and candidate approaches were then further analyzed to test specific hypothesis about the activity of FAMA, the shape of its regulatory network, and to create a new set of stomata-specific or stomata-enriched reporters.


eLife | 2014

Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module

Juliana L. Matos; On Sun Lau; Charles Hachez; Alfredo Cruz-Ramírez; Ben Scheres; Dominique C. Bergmann

The presumed totipotency of plant cells leads to questions about how specific stem cell lineages and terminal fates could be established. In the Arabidopsis stomatal lineage, a transient self-renewing phase creates precursors that differentiate into one of two epidermal cell types, guard cells or pavement cells. We found that irreversible differentiation of guard cells involves RETINOBLASTOMA-RELATED (RBR) recruitment to regulatory regions of master regulators of stomatal initiation, facilitated through interaction with a terminal stomatal lineage transcription factor, FAMA. Disrupting physical interactions between FAMA and RBR preferentially reveals the role of RBR in enforcing fate commitment over its role in cell-cycle control in this developmental context. Analysis of the phenotypes linked to the modulation of FAMA and RBR sheds new light on the way iterative divisions and terminal differentiation are coordinately regulated in a plant stem-cell lineage. DOI: http://dx.doi.org/10.7554/eLife.03271.001


Plant Molecular Biology | 2014

Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays.

Robert B. Heinen; Gerd Patrick Bienert; David Cohen; Adrien S. Chevalier; Norbert Uehlein; Charles Hachez; Ralf Kaldenhoff; Didier Le Thiec; François Chaumont

Stomata, the microscopic pores on the surface of the aerial parts of plants, are bordered by two specialized cells, known as guard cells, which control the stomatal aperture according to endogenous and environmental signals. Like most movements occurring in plants, the opening and closing of stomata are based on hydraulic forces. During opening, the activation of plasma membrane and tonoplast transporters results in solute accumulation in the guard cells. To re-establish the perturbed osmotic equilibrium, water follows the solutes into the cells, leading to their swelling. Numerous studies have contributed to the understanding of the mechanism and regulation of stomatal movements. However, despite the importance of transmembrane water flow during this process, only a few studies have provided evidence for the involvement of water channels, called aquaporins. Here, we microdissected Zea mays stomatal complexes and showed that members of the aquaporin plasma membrane intrinsic protein (PIP) subfamily are expressed in these complexes and that their mRNA expression generally follows a diurnal pattern. The substrate specificity of two of the expressed ZmPIPs, ZmPIP1;5 and ZmPIP1;6, was investigated by heterologous expression in Xenopus oocytes and yeast cells. Our data show that both isoforms facilitate transmembrane water diffusion in the presence of the ZmPIP2;1 isoform. In addition, both display CO2 permeability comparable to that of the CO2 diffusion facilitator NtAQP1. These data indicate that ZmPIPs may have various physiological roles in stomatal complexes.


Plant Physiology | 2016

Tonoplast aquaporins facilitate lateral root emergence

Hagen Reinhardt; Charles Hachez; Manuela Désirée Bienert; Azeez Beebo; Kamal Swarup; Ute Voss; Karim Bouhidel; Lorenzo Frigerio; Jan K. Schjoerring; Malcolm J. Bennett; François Chaumont

Aquaporins located in the vacuolar membrane contribute to the proper development of lateral roots. Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence.

Collaboration


Dive into the Charles Hachez's collaboration.

Top Co-Authors

Avatar

François Chaumont

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Damien Cavez

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Hagen Reinhardt

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Robert B. Heinen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enric Zelazny

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Menachem Moshelion

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Adrien S. Chevalier

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Arnaud Besserer

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Xavier Draye

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge