Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles J. Tucker is active.

Publication


Featured researches published by Charles J. Tucker.


Genome Biology | 2004

Integrating phenotypic and expression profiles to map arsenic-response networks

Astrid C. Haugen; R. Kelley; Jennifer B. Collins; Charles J. Tucker; Changchun Deng; Cynthia A. Afshari; J. Martin Brown; Trey Ideker; Bennett Van Houten

BackgroundArsenic is a nonmutagenic carcinogen affecting millions of people. The cellular impact of this metalloid in Saccharomyces cerevisiae was determined by profiling global gene expression and sensitivity phenotypes. These data were then mapped to a metabolic network composed of all known biochemical reactions in yeast, as well as the yeast network of 20,985 protein-protein/protein-DNA interactions.ResultsWhile the expression data unveiled no significant nodes in the metabolic network, the regulatory network revealed several important nodes as centers of arsenic-induced activity. The highest-scoring proteins included Fhl1, Msn2, Msn4, Yap1, Cad1 (Yap2), Pre1, Hsf1 and Met31. Contrary to the gene-expression analyses, the phenotypic-profiling data mapped to the metabolic network. The two significant metabolic networks unveiled were shikimate, and serine, threonine and glutamate biosynthesis. We also carried out transcriptional profiling of specific deletion strains, confirming that the transcription factors Yap1, Arr1 (Yap8), and Rpn4 strongly mediate the cells adaptation to arsenic-induced stress but that Cad1 has negligible impact.ConclusionsBy integrating phenotypic and transcriptional profiling and mapping the data onto the metabolic and regulatory networks, we have shown that arsenic is likely to channel sulfur into glutathione for detoxification, leads to indirect oxidative stress by depleting glutathione pools, and alters protein turnover via arsenation of sulfhydryl groups on proteins. Furthermore, we show that phenotypically sensitive pathways are upstream of differentially expressed ones, indicating that transcriptional and phenotypic profiling implicate distinct, but related, pathways.


Environmental Health Perspectives | 2005

Global Gene Expression Associated with Hepatocarcinogenesis in Adult Male Mice Induced by in Utero Arsenic Exposure

Jie Liu; Yaxiong Xie; Danica M.K. Ducharme; Jun Shen; Bhalchandra A. Diwan; B. Alex Merrick; Sherry F. Grissom; Charles J. Tucker; Richard S. Paules; Raymond W. Tennant; Michael P. Waalkes

Our previous work has shown that exposure to inorganic arsenic in utero produces hepatocellular carcinoma (HCC) in adult male mice. To explore further the molecular mechanisms of transplacental arsenic hepatocarcinogenesis, we conducted a second arsenic transplacental carcinogenesis study and used a genomewide microarray to profile arsenic-induced aberrant gene expression more extensively. Briefly, pregnant C3H mice were given drinking water containing 85 ppm arsenic as sodium arsenite or unaltered water from days 8 to 18 of gestation. The incidence of HCC in adult male offspring was increased 4-fold and tumor multiplicity 3-fold after transplacental arsenic exposure. Samples of normal liver and liver tumors were taken at autopsy for genomic analysis. Arsenic exposure in utero resulted in significant alterations (p < 0.001) in the expression of 2,010 genes in arsenic-exposed liver samples and in the expression of 2,540 genes in arsenic-induced HCC. Ingenuity Pathway Analysis revealed that significant alterations in gene expression occurred in a number of biological networks, and Myc plays a critical role in one of the primary networks. Real-time reverse transcriptase–polymerase chain reaction and Western blot analysis of selected genes/proteins showed > 90% concordance. Arsenic-altered gene expression included activation of oncogenes and HCC biomarkers, and increased expression of cell proliferation–related genes, stress proteins, and insulin-like growth factors and genes involved in cell–cell communications. Liver feminization was evidenced by increased expression of estrogen-linked genes and altered expression of genes that encode gender-related metabolic enzymes. These novel findings are in agreement with the biology and histology of arsenic-induced HCC, thereby indicating that multiple genetic events are associated with transplacental arsenic hepatocarcinogenesis.


Genome Biology | 2008

Gene expression response in target organ and whole blood varies as a function of target organ injury phenotype

Edward K. Lobenhofer; J. Todd Auman; Pamela E. Blackshear; Gary A. Boorman; Pierre R. Bushel; Michael L. Cunningham; Jennifer Fostel; Kevin Gerrish; Alexandra N. Heinloth; Richard D. Irwin; David E. Malarkey; B. Alex Merrick; Stella O. Sieber; Charles J. Tucker; Sandra M. Ward; Ralph E. Wilson; Patrick Hurban; Raymond W. Tennant; Richard S. Paules

This report details the standardized experimental design and the different data streams that were collected (histopathology, clinical chemistry, hematology and gene expression from the target tissue (liver) and a bio-available tissue (blood)) after treatment with eight known hepatotoxicants (at multiple time points and doses with multiple biological replicates). The results of the study demonstrate the classification of histopathological differences, likely reflecting differences in mechanisms of cell-specific toxicity, using either liver tissue or blood transcriptomic data.


Nucleic Acids Research | 2005

Use of a mixed tissue RNA design for performance assessments on multiple microarray formats

Karol L. Thompson; Barry A. Rosenzweig; P. Scott Pine; Jacques Retief; Yaron Turpaz; Cynthia A. Afshari; Hisham K. Hamadeh; Michael A. Damore; Michael Boedigheimer; Eric A. G. Blomme; Rita Ciurlionis; Jeffrey F. Waring; James C. Fuscoe; Richard S. Paules; Charles J. Tucker; Thomas Fare; Ernest M. Coffey; Yudong He; Patrick J. Collins; Kurt Jarnagin; Susan Fujimoto; Brigitte Ganter; Gretchen L. Kiser; Tamma Kaysser-Kranich; Joseph F. Sina; Frank D. Sistare

The comparability and reliability of data generated using microarray technology would be enhanced by use of a common set of standards that allow accuracy, reproducibility and dynamic range assessments on multiple formats. We designed and tested a complex biological reagent for performance measurements on three commercial oligonucleotide array formats that differ in probe design and signal measurement methodology. The reagent is a set of two mixtures with different proportions of RNA for each of four rat tissues (brain, liver, kidney and testes). The design provides four known ratio measurements of >200 reference probes, which were chosen for their tissue-selectivity, dynamic range coverage and alignment to the same exemplar transcript sequence across all three platforms. The data generated from testing three biological replicates of the reagent at eight laboratories on three array formats provides a benchmark set for both laboratory and data processing performance assessments. Close agreement with target ratios adjusted for sample complexity was achieved on all platforms and low variance was observed among platforms, replicates and sites. The mixed tissue design produces a reagent with known gene expression changes within a complex sample and can serve as a paradigm for performance standards for microarrays that target other species.


Experimental and Molecular Medicine | 2012

A high concentration of genistein down-regulates activin A, Smad3 and other TGF-β pathway genes in human uterine leiomyoma cells

Xudong Di; Danica M.K. Andrews; Charles J. Tucker; Linda Yu; Alicia B. Moore; Xiaolin Zheng; Lysandra Castro; Tonia Hermon; Hang Xiao; Darlene Dixon

Previously, we found that high doses of genistein show an inhibitory effect on uterine leiomyoma (UtLM) cell proliferation. In this study, using microarray analysis and Ingenuity Pathways Analysis™, we identified genes (up- or down-regulated, ≥ 1.5 fold, P ≤ 0.001), functions and signaling pathways that were altered following treatment with an inhibitory concentration of genistein (50 µg/ml) in UtLM cells. Downregulation of TGF-β signaling pathway genes, activin A, activin B, Smad3, TGF-β2 and genes related to cell cycle regulation, with the exception of the upregulation of the CDK inhibitor P15, were identified and validated by real-time RT-PCR studies. Western blot analysis further demonstrated decreased protein expression of activin A and Smad3 in genistein-treated UtLM cells. Moreover, we found that activin A stimulated the growth of UtLM cells, and the inhibitory effect of genistein was partially abrogated in the presence of activin A. Overexpression of activin A and Smad3 were found in tissue samples of leiomyoma compared to matched myometrium, supporting the contribution of activin A and Smad3 in promoting the growth of UtLM cells. Taken together, these results suggest that down-regulation of activin A and Smad3, both members of the TGF-β pathway, may offer a mechanistic explanation for the inhibitory effect of a high-dose of genistein on UtLM cells, and might be potential therapeutic targets for treatment of clinical cases of uterine leiomyomas.


Development | 2015

Expanding the power of recombinase-based labeling to uncover cellular diversity

Nicholas W. Plummer; Irina Y. Evsyukova; Sabrina D. Robertson; Jacqueline de Marchena; Charles J. Tucker

Investigating the developmental, structural and functional complexity of mammalian tissues and organs depends on identifying and gaining experimental access to diverse cell populations. Here, we describe a set of recombinase-responsive fluorescent indicator alleles in mice that significantly extends our ability to uncover cellular diversity by exploiting the intrinsic genetic signatures that uniquely define cell types. Using a recombinase-based intersectional strategy, these new alleles uniquely permit non-invasive labeling of cells defined by the overlap of up to three distinct gene expression domains. In response to different combinations of Cre, Flp and Dre recombinases, they express eGFP and/or tdTomato to allow the visualization of full cellular morphology. Here, we demonstrate the value of these features through a proof-of-principle analysis of the central noradrenergic system. We label previously inaccessible subpopulations of noradrenergic neurons to reveal details of their three-dimensional architecture and axon projection profiles. These new indicator alleles will provide experimental access to cell populations at unprecedented resolution, facilitating analysis of their developmental origin and anatomical, molecular and physiological properties. Summary: New fluorescent indicator alleles utilize Cre, Flp and Dre recombinases to label previously inaccessible cell populations. The complete architecture of two cell populations can be visualized in the same mouse.


ACS Nano | 2016

Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury.

Salik Hussain; Zhaoxia Ji; Alexia J. Taylor; Laura M. DeGraff; Margaret George; Charles J. Tucker; Chong Hyun Chang; Ruibin Li; James C. Bonner; Stavros Garantziotis

Commercialization of multiwalled carbon nanotubes (MWCNT)-based applications has been hampered by concerns regarding their lung toxicity potential. Hyaluronic acid (HA) is a ubiquitously found polysaccharide, which is anti-inflammatory in its native high molecular weight form. HA-functionalized smart MWCNTs have shown promise as tumor-targeting drug delivery agents and can enhance bone repair and regeneration. However, it is unclear whether HA functionalization could reduce the pulmonary toxicity potential of MWCNTs. Using in vivo and in vitro approaches, we investigated the effectiveness of MWCNT functionalization with HA in increasing nanotube biocompatibility and reducing lung inflammatory and fibrotic effects. We utilized three-dimensional cultures of differentiated primary human bronchial epithelia to translate findings from rodent assays to humans. We found that HA functionalization increased stability and dispersion of MWCNTs and reduced postexposure lung inflammation, fibrosis, and mucus cell metaplasia compared with nonfunctionalized MWCNTs. Cocultures of fully differentiated bronchial epithelial cells (cultivated at air-liquid interface) and human lung fibroblasts (submerged) displayed significant reduction in injury, oxidative stress, as well as pro-inflammatory gene and protein expression after exposure to HA-functionalized MWCNTs compared with MWCNTs alone. In contrast, neither type of nanotubes stimulated cytokine production in primary human alveolar macrophages. In aggregate, our results demonstrate the effectiveness of HA functionalization as a safer design approach to eliminate MWCNT-induced lung injury and suggest that HA functionalization works by reducing MWCNT-induced epithelial injury.


Molecular Carcinogenesis | 2011

A novel role for the T-box transcription factor Tbx1 as a negative regulator of tumor cell growth in mice

Carol S. Trempus; Sung-Jen Wei; Margaret M. Humble; Hong Dang; Carl D. Bortner; Maria I. Sifre; Grace E. Kissling; Jeffrey A. Sunman; Steven K. Akiyama; John D. Roberts; Charles J. Tucker; Kyung-Soo Chun; Raymond W. Tennant; Robert Langenbach

The T‐box transcription factor, Tbx1, an important regulatory gene in development, is highly expressed in hair follicle (HF) stem cells in adult mice. Because mouse models of skin carcinogenesis have demonstrated that HF stem cells are a carcinogen target population and contribute significantly to tumor development, we investigated whether Tbx1 plays a role in skin carcinogenesis. We first assessed Tbx1 expression levels in mouse skin tumors, and found down‐regulation in all tumors examined. To study the effect of Tbx1 expression on growth and tumorigenic potential of carcinoma cells, we transfected mouse Tbx1 cDNA into a mouse spindle cell carcinoma cell line that did not express endogenous Tbx1. Following transfection, two cell lines expressing different levels of the Tbx1/V5 fusion protein were selected for further study. Intradermal injection of the cell lines into mice revealed that Tbx1 expression significantly suppressed tumor growth, albeit with no change in tumor morphology. In culture, ectopic Tbx1 expression resulted in decreased cell growth and reduced development into multilayered colonies, compared to control cells. Tbx1‐transfectants exhibited a reduced proliferative rate compared to control cells, with fewer cells in S and G2/M phases. The Tbx1 transfectants developed significantly fewer colonies in soft agar, demonstrating loss of anchorage‐independent growth. Taken together, our data show that ectopic expression of Tbx1 restored contact inhibition to the skin tumor cells, suggesting that this developmentally important transcription factor may have a novel dual role as a negative regulator of tumor growth.


American Journal of Physiology-endocrinology and Metabolism | 2012

An essential role of p27 downregulation in fenvalerate-induced cell growth in human uterine leiomyoma and smooth muscle cells.

Xiaohua Gao; Linda Yu; Lysandra Castro; Charles J. Tucker; Alicia B. Moore; Hang Xiao; Darlene Dixon

Previously, we reported that fenvalerate (Fen) promotes proliferation of human uterine leiomyoma (UtLM) cells by enhancing progression of cells from G(0)-G(1) to S phase through molecular mechanisms independent of estrogen receptor-α and -β. The cyclin-dependent kinase (CDK) inhibitor p27, which blocks G(1) to S phase transitions and is an important regulator of CDK2, is often decreased in hormonally regulated diseases, including uterine leiomyomas. Therefore, we were interested in whether Fen could regulate the expression of p27 and whether p27 might play a role in Fen-induced cell proliferation. Expression of p27 in Fen-treated UtLM and uterine smooth muscle cells (UtSMCs) was examined. We found that p27 mRNA was significantly downregulated and that protein levels were decreased in both cell types treated with 10 μM Fen for 24 h compared with respective controls. Overexpression of p27 in UtLM cells and UtSMCs using an adenovirus doxycycline (Dox)-regulated Tet-off system abrogated the proliferative effects of Fen, as evidenced by decreased total cell numbers and BrdU incorporation. Fen treatment increased CDK2 mRNA expression levels; however, overexpression of p27 also abolished this effect. In contrast, Dox treatment dramatically restored the above muted responses. Finally, we utilized siRNA to knock down p27 expression. After transfection, mRNA levels of p27 were downregulated in UtLM cells and UtSMCs and total cell numbers and BrdU incorporation increased significantly compared with nontransfected cells. Fen treatment in the presence of p27 silencing enhanced the increased cell counts and BrdU labeling in UtLM cells and UtSMCs. Taken together, these results indicate that p27 downregulation is critical for Fen-induced cell proliferation.


BMC Genomics | 2005

A qualitative assessment of direct-labeled cDNA products prior to microarray analysis

Sherry F. Grissom; Edward K. Lobenhofer; Charles J. Tucker

BackgroundThe success of the microarray process in determining differential gene expression of thousands of genes is dependent upon the quality and integrity of the starting RNA, this being particularly true of direct labeling via a reverse transcription procedure. Furthermore, an RNA of reasonable quality still may not yield reliable hybridization data if the labeling efficiency was poor.ResultsHere we present a novel assay for assessing the quality of directly labeled fluorescent cDNA prior to microarray hybridization utilizing the Agilent 2100 Bioanalyzer, which employs microfluidic technology for the analysis of nucleic acids and proteins. Using varying amounts of RNase to simulate RNA degradation, we show the strength of this un-advertised assay in determining the relative amounts of cDNA obtained from a direct labeling reaction.ConclusionUtilization of this method in the lab will help to prevent the costly mistake of hybridizing poor quality direct labeled products to expensive arrays.

Collaboration


Dive into the Charles J. Tucker's collaboration.

Top Co-Authors

Avatar

Richard S. Paules

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

B. Alex Merrick

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gary A. Boorman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael L. Cunningham

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Pierre R. Bushel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Raymond W. Tennant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stella O. Sieber

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cynthia A. Afshari

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jennifer B. Collins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John D. Roberts

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge