Charles J. Walsh
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles J. Walsh.
Cell | 1979
Elaine Y. Lai; Charles J. Walsh; Donald Wardell; Chandler Fulton
The programmed de novo synthesis of flagellar tubulin during the hour-long differentiation of Naegleria gruberi from amoebae to flagellates is our paradigm for the study of gene expression during cell differentiation. This paper reports the efficient translation of flagellar tubulin mRNA in the wheat germ cell-free system directed by total or polyadenylated RNA extracted from differentiating cells. The tubulin in the in vitro product has a subunit molecular weight of 55,000, separates into alpha and beta subunits under suitable conditions of polyacrylamide gel electrophoreis and co-polymerizes with calf brain tubulin. At least half of the tubulin synthesized in vitro is precipitated by antibodies specific to flagellar tubulin, and the immunoprecipitated tubulin subunits yield peptide maps similar to those of outer doublet tublin. Flagellar tubulin is the predominant protein synthesized in the cell-free system, and amounts to about 5% of the polypeptides whose synthesis is directed by total RNA from differentiating cells. In contrast, little or no flagellar tubulin is synthesized when the cell-free system is directed by RNA extracted from amoebae prior to differentiation. Translation assays show that at least 92% of the flagellar tubulin mRNA appears during differentiation. The time course of appearance of this mRNA was measured by quantitative immunoprecipitation of the cell-free products. Under conditions where cells from flagella 60 min after initiation of differentiation, translatable flagellar tubulin mRNA was first detected at 20 min, reached a maximum at about 60 min and then declined. An excellent correlation was observed between the amount of translatable flagellar tubulin mRNA and the previously measured rates of flagellar tubulin synthesis in vivo. These results indicate that synthesis of flagellar tubulin is a direct reflection of the abundance of its mRNA, and provide the molecular techniques for dissection of the factors that regulate the rapid appearance of this structural protein during differentiation.
Research in Microbiology | 2011
Lillian K. Fritz-Laylin; Michael L. Ginger; Charles J. Walsh; Scott C. Dawson; Chandler Fulton
Naegleria gruberi, a free-living protist, has long been treasured as a model for basal body and flagellar assembly due to its ability to differentiate from crawling amoebae into swimming flagellates. The full genome sequence of Naegleria gruberi has recently been used to estimate gene families ancestral to all eukaryotes and to identify novel aspects of Naegleria biology, including likely facultative anaerobic metabolism, extensive signaling cascades, and evidence for sexuality. Distinctive features of the Naegleria genome and nuclear biology provide unique perspectives for comparative cell biology, including cell division, RNA processing and nucleolar assembly. We highlight here exciting new and novel aspects of Naegleria biology identified through genomic analysis.
Journal of Cell Biology | 2005
Hong-Kyung Kim; Jeong-Gu Kang; Shigehiko Yumura; Charles J. Walsh; Jin Won Cho; JooHun Lee
The de novo formation of basal bodies in Naegleria gruberi was preceded by the transient formation of a microtubule (MT)-nucleating complex containing γ-tubulin, pericentrin, and myosin II complex (GPM complex). The MT-nucleating activity of GPM complexes was maximal just before the formation of visible basal bodies and then rapidly decreased. The regulation of MT-nucleating activity of GPM complexes was accomplished by a transient phosphorylation of the complex. Inhibition of dephosphorylation after the formation of basal bodies resulted in the formation of multiple flagella. 2D-gel electrophoresis and Western blotting showed a parallel relationship between the MT-nucleating activity of GPM complexes and the presence of hyperphosphorylated γ-tubulin in the complexes. These data suggest that the nucleation of MTs by GPM complexes precedes the de novo formation of basal bodies and that the regulation of MT-nucleating activity of GPM complexes is essential to the regulation of basal body number.
Molecular and Cellular Biology | 1988
Joo Hun Lee; Charles J. Walsh
The nuclear run-on technique was used to measure the rate of transcription of flagellar genes during the differentiation of Naegleria gruberi amebae into flagellates. Synthesis of mRNAs for the axonemal proteins alpha- and beta-tubulin and flagellar calmodulin, as well as a coordinately regulated poly(A)+ RNA that codes for an unidentified protein, showed transient increases averaging 22-fold. The rate of synthesis of two poly(A)+ RNAs common to amebae and flagellates was low until the transcription of the flagellar genes began to decline, at which time synthesis of the RNAs found in amebae increased 3- to 10-fold. The observed changes in the rate of transcription can account quantitatively for the 20-fold increase in flagellar mRNA concentration during the differentiation. The data for the flagellar calmodulin gene demonstrate transcriptional regulation for a nontubulin axonemal protein. The data also demonstrate at least two programs of transcriptional regulation during the differentiation and raise the intriguing possibility that some significant fraction of the nearly 200 different proteins of the flagellar axoneme is transcriptionally regulated during the 1 h it takes N. gruberi amebae to form visible flagella.
PLOS ONE | 2012
Charles J. Walsh
Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.
Experimental Cell Research | 1979
Catherine Mickey; Hiroshi Nakazato; Mary Edmonds; Charles J. Walsh
Abstract The ameboid stage of the amebo-flagellate Naegleria gruberi was found to synthesize two size classes of polynucleotides resistant to digestion with a mixture of ribonuclease A and T1. These two size classes were present in both the nucleus and the cytoplasm. Cells differentiating into flagellates were found to lose a variable amount of the smaller, nuclease-resistant fragment while synthesizing only the larger nuclease-resistant class. The adenosine to AMP ratio of the larger nuclease-resistant fragment was compatible with a 3′-terminal poly(A) sequence of 87 nucleotides average length. The smaller nuclease-resistant fragment was found to be rich in AMP (44–49%) but contained a substantial amount of other nucleotides. The smaller fragment was heterogeneous in size with an average length of 10–12 nucleotides as estimated by its elution from a DEAE column. Fractionation of RNA on oligo(dT) cellulose demonstrated that the large and small nuclease-resistant fragments were on different RNA molecules. Only the large poly(A) sequence was present in either cytoplasmic or nuclear RNA which bound to oligo(dT) cellulose. On the other hand, only the small nuclease resistant fragment was found in the unbound RNA from either nuclei or cytoplasm.
Experimental Cell Research | 2008
Janet Mar; Charles J. Walsh
Four mRNAs (alpha- and beta-tubulin, flagellar calmodulin and Class-I), specifically expressed when Naegleria amebae differentiate into flagellates, were followed at 5-10 min intervals during the temperature-shock induction of multiple flagella in order to better understand how basal body and flagellum number are regulated. Surprisingly, tubulin synthesis continued during the 37 min temperature shock. An initial rapid decline in alpha- and beta-tubulin and flagellar calmodulin mRNAs was followed by a rapid re-accumulation of mRNAs before the temperature was lowered. mRNA levels continued to increase until they exceeded control levels by 4-21%. Temperature shock delayed flagella formation 37 min, produced twice as much tubulin protein synthesis and three fold more flagella. Labeling with an antibody against Naegleria centrin suggested that basal body formation was also delayed 30-40 min. An extended temperature shock demonstrated that lowering the temperature was not required for return of mRNAs to near control levels suggesting that induction of multiple flagella and the formation of flagella per se are affected in different ways. We suggest that temperature-shock induction of multiple flagella reflects increased mRNA accumulation combined with interference with the regulation of the recently reported microtubule-nucleating complex needed for basal body formation.
Journal of Biological Chemistry | 1980
Charles J. Walsh
European Journal of Cell Biology | 2007
Charles J. Walsh
Journal of Cell Biology | 1986
Janet Mar; Joo Hun Lee; Daniel Shea; Charles J. Walsh