Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles J. Woodrow is active.

Publication


Featured researches published by Charles J. Woodrow.


The Lancet | 2010

Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial.

Arjen M. Dondorp; Caterina I. Fanello; Ilse C. E. Hendriksen; Ermelinda Gomes; Amir Seni; Kajal D. Chhaganlal; Kalifa Bojang; Rasaq Olaosebikan; Nkechinyere Anunobi; Kathryn Maitland; Esther Kivaya; Tsiri Agbenyega; Samuel Blay Nguah; Jennifer L. Evans; Samwel Gesase; Catherine Kahabuka; George Mtove; Behzad Nadjm; Jacqueline L. Deen; Juliet Mwanga-Amumpaire; Margaret Nansumba; Corine Karema; Noella Umulisa; Aline Uwimana; Olugbenga A. Mokuolu; Ot Adedoyin; Wahab Babatunde Rotimi Johnson; Antoinette Tshefu; Marie Onyamboko; Tharisara Sakulthaew

Summary Background Severe malaria is a major cause of childhood death and often the main reason for paediatric hospital admission in sub-Saharan Africa. Quinine is still the established treatment of choice, although evidence from Asia suggests that artesunate is associated with a lower mortality. We compared parenteral treatment with either artesunate or quinine in African children with severe malaria. Methods This open-label, randomised trial was undertaken in 11 centres in nine African countries. Children (<15 years) with severe falciparum malaria were randomly assigned to parenteral artesunate or parenteral quinine. Randomisation was in blocks of 20, with study numbers corresponding to treatment allocations kept inside opaque sealed paper envelopes. The trial was open label at each site, and none of the investigators or trialists, apart from for the trial statistician, had access to the summaries of treatment allocations. The primary outcome measure was in-hospital mortality, analysed by intention to treat. This trial is registered, number ISRCTN50258054. Findings 5425 children were enrolled; 2712 were assigned to artesunate and 2713 to quinine. All patients were analysed for the primary outcome. 230 (8·5%) patients assigned to artesunate treatment died compared with 297 (10·9%) assigned to quinine treatment (odds ratio [OR] stratified for study site 0·75, 95% CI 0·63–0·90; relative reduction 22·5%, 95% CI 8·1–36·9; p=0·0022). Incidence of neurological sequelae did not differ significantly between groups, but the development of coma (65/1832 [3·5%] with artesunate vs 91/1768 [5·1%] with quinine; OR 0·69 95% CI 0·49–0·95; p=0·0231), convulsions (224/2712 [8·3%] vs 273/2713 [10·1%]; OR 0·80, 0·66–0·97; p=0·0199), and deterioration of the coma score (166/2712 [6·1%] vs 208/2713 [7·7%]; OR 0·78, 0·64–0·97; p=0·0245) were all significantly less frequent in artesunate recipients than in quinine recipients. Post-treatment hypoglycaemia was also less frequent in patients assigned to artesunate than in those assigned to quinine (48/2712 [1·8%] vs 75/2713 [2·8%]; OR 0·63, 0·43–0·91; p=0·0134). Artesunate was well tolerated, with no serious drug-related adverse effects. Interpretation Artesunate substantially reduces mortality in African children with severe malaria. These data, together with a meta-analysis of all trials comparing artesunate and quinine, strongly suggest that parenteral artesunate should replace quinine as the treatment of choice for severe falciparum malaria worldwide. Funding The Wellcome Trust.


Lancet Infectious Diseases | 2015

Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker

Kyaw Myo Tun; Mallika Imwong; Khin Maung Lwin; Aye A. Win; Tin Maung Hlaing; Thaung Hlaing; Khin Lin; Myat Phone Kyaw; Katherine Plewes; M. Abul Faiz; Mehul Dhorda; Phaik Yeong Cheah; Sasithon Pukrittayakamee; Elizabeth A. Ashley; Timothy J. C. Anderson; Shalini Nair; Marina McDew-White; Jennifer A. Flegg; Eric P.M. Grist; Philippe Allard Guérin; Richard J. Maude; Frank Smithuis; Arjen M. Dondorp; Nicholas P. J. Day; François Nosten; Nicholas J. White; Charles J. Woodrow

Summary Background Emergence of artemisinin resistance in southeast Asia poses a serious threat to the global control of Plasmodium falciparum malaria. Discovery of the K13 marker has transformed approaches to the monitoring of artemisinin resistance, allowing introduction of molecular surveillance in remote areas through analysis of DNA. We aimed to assess the spread of artemisinin-resistant P falciparum in Myanmar by determining the relative prevalence of P falciparum parasites carrying K13-propeller mutations. Methods We did this cross-sectional survey at malaria treatment centres at 55 sites in ten administrative regions in Myanmar, and in relevant border regions in Thailand and Bangladesh, between January, 2013, and September, 2014. K13 sequences from P falciparum infections were obtained mainly by passive case detection. We entered data into two geostatistical models to produce predictive maps of the estimated prevalence of mutations of the K13 propeller region across Myanmar. Findings Overall, 371 (39%) of 940 samples carried a K13-propeller mutation. We recorded 26 different mutations, including nine mutations not described previously in southeast Asia. In seven (70%) of the ten administrative regions of Myanmar, the combined K13-mutation prevalence was more than 20%. Geospatial mapping showed that the overall prevalence of K13 mutations exceeded 10% in much of the east and north of the country. In Homalin, Sagaing Region, 25 km from the Indian border, 21 (47%) of 45 parasite samples carried K13-propeller mutations. Interpretation Artemisinin resistance extends across much of Myanmar. We recorded P falciparum parasites carrying K13-propeller mutations at high prevalence next to the northwestern border with India. Appropriate therapeutic regimens should be tested urgently and implemented comprehensively if spread of artemisinin resistance to other regions is to be avoided. Funding Wellcome Trust–Mahidol University–Oxford Tropical Medicine Research Programme and the Bill & Melinda Gates Foundation.


The Lancet | 1993

Cardiac effects of antimalarial treatment with halofantrine

François Nosten; F. ter Kuile; Christine Luxemburger; Charles J. Woodrow; T. Chongsuphajaisiddhi; Nicholas J. White; D.E. Kyle

In a prospective electrocardiographic study of Karen patients with acute uncomplicated falciparum malaria, mefloquine (25 mg/kg) had no cardiac effects (n = 53), but halofantrine (72 mg/kg) induced consistent dose-related lengthening of the PR and QT intervals in all 61 patients treated. The likelihood of significant QTc prolongation (by more than 25% or a QTc of 0.55 s1/2 or more) was greater after halofantrine as retreatment following mefloquine failure than as primary treatment (7/10 vs 18/51; relative risk 2.0 [95% Cl 1.1-3.4], p = 0.04). More than 60% of the effect occurred with three doses of halofantrine (24 mg/kg). The arrhythmogenic potential of halofantrine should now be investigated.


Nature Genetics | 2015

Genetic architecture of artemisinin-resistant Plasmodium falciparum

Olivo Miotto; Roberto Amato; Elizabeth A. Ashley; Bronwyn MacInnis; Jacob Almagro-Garcia; Chanaki Amaratunga; Pharath Lim; Daniel Mead; Samuel O. Oyola; Mehul Dhorda; Mallika Imwong; Charles J. Woodrow; Magnus Manske; Jim Stalker; Eleanor Drury; Susana Campino; Lucas Amenga-Etego; Thuy-Nhien Nguyen Thanh; Hien Tinh Tran; Pascal Ringwald; Delia Bethell; François Nosten; Aung Pyae Phyo; Sasithon Pukrittayakamee; Kesinee Chotivanich; Char Meng Chuor; Chea Nguon; Seila Suon; Sokunthea Sreng; Paul N. Newton

We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population.


Science | 2015

Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance

Sachel Mok; Elizabeth A. Ashley; Pedro Eduardo Ferreira; Lei Zhu; Z. Lin; Tsin W. Yeo; Kesinee Chotivanich; Mallika Imwong; Sasithon Pukrittayakamee; Mehul Dhorda; Chea Nguon; Pharath Lim; Chanaki Amaratunga; Seila Suon; Tran Tinh Hien; Ye Htut; Ma Faiz; Marie Onyamboko; Mayfong Mayxay; Paul N. Newton; Rupam Tripura; Charles J. Woodrow; Olivo Miotto; Dominic P. Kwiatkowski; François Nosten; Nicholas P. J. Day; Peter Rainer Preiser; Nicholas J. White; Arjen M. Dondorp; Rick M. Fairhurst

Mechanisms propelling drug resistance If it were to spread, resistance to the drug artemisinin would seriously derail the recent gains of global malaria control programs (see the Perspective by Sibley). Mutations in a region called the K13-propeller are predictive for artemisinin resistance in Southeast Asia. Mok et al. looked at the patterns of gene expression in parasites isolated from more than 1000 patients sampled in Africa, Bangladesh, and the Mekong region. A range of mutations that alter protein repair pathways and the timing of the parasites developmental cycle were only found in parasites from the Mekong region. Straimer et al. genetically engineered the K13 region of parasites obtained from recent clinical isolates. Mutations in this region were indeed responsible for the resistance phenotypes. Science, this issue p. 431, p. 428; see also p. 373 Resistance to the primary antimalarial drug lies in mutations in protein repair and developmental pathways. [Also see Perspective by Sibley] Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain–carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.


Journal of Biological Chemistry | 1999

Intraerythrocytic Plasmodium falciparum Expresses a High Affinity Facilitative Hexose Transporter

Charles J. Woodrow; Jeffrey Penny; Sanjeev Krishna

Asexual stages of Plasmodium falciparum cause severe malaria and are dependent upon host glucose for energy. We have identified a glucose transporter ofP. falciparum (PfHT1) and studied its function and expression during parasite development in vitro. PfHT1 is a saturable, sodium-independent, and stereospecific transporter, which is inhibited by cytochalasin B, and has a relatively high affinity for glucose (K m = 0.48 mm) when expressed in Xenopus laevis oocytes. Competition experiments with glucose analogues show that hydroxyl groups at positions C-3 and C-4 are important for ligand binding. mRNA levels for PfHT1, assessed by the quantitative technique of tandem competitive polymerase chain reaction, are highest during the small ring stages of infection and lowest in gametocytes. Confocal immunofluorescence microscopy localizes PfHT1 to the region of the parasite plasma membrane and not to host structures. These findings have implications for development of new drug targets in malaria as well as for understanding of the pathophysiology of severe infection. When hypoglycemia complicates malaria, modeling studies suggest that the high affinity of PfHT1 is likely to increase the relative proportion of glucose taken up by parasites and thereby worsen the clinical condition.


Neuropathology and Applied Neurobiology | 2001

Occludin expression in microvessels of neoplastic and non-neoplastic human brain

M. C. Papadopoulos; S. Saadoun; Charles J. Woodrow; D. C. Davies; P. Costa-Martins; R. F. Moss; Sanjeev Krishna; B. A. Bell

The tight junction protein occludin ‘glues’ normal, adjacent brain microvessel endothelial cells together. Malignant brain tumours cause cerebral oedema because they have leaky endothelial tight junctions, which allow plasma fluid to enter the brain from the microvessel lumen. In order to identify molecular abnormalities in tumour endothelial tight junctions, we investigated occludin expression in microvessels from adult human non‐neoplastic brain tissue using immunohistochemistry and immunoblotting. The proportions of microvessels immunolabelling for occludin were >2/3 in 5/5 non‐neoplastic brain tissue samples, >1/3 in 5/5 low grade (Daumas‐Duport I or II) astrocytomas and <1/3 in 5/5 high grade (III or IV) astrocytomas and 6/6 metastatic adenocarcinomas. Six non‐neoplastic brain tissue immunoblots gave a 55‐kDa occludin band, three low‐grade astrocytomas gave 55‐kDa and 60‐kDa bands, 13 high‐grade astrocytomas gave 60‐kDa or no band and four adenocarcinomas did not give an occludin band. Expression of 55‐kDa occludin inversely correlated with the presence of contrast enhancement on computed tomograms (P < 0.001). Electron microscopy showed open endothelial tight junctions in 0/2 non‐neoplastic human brain specimens and 2/2 high‐grade astrocytomas. We suggest that loss of 55‐kDa occludin expression in human brain tumours may contribute to endothelial tight junction opening. Characterizing the molecular pathology of brain endothelial tight junctions may facilitate the design of novel drugs against cerebral oedema.


eLife | 2016

Genomic epidemiology of artemisinin resistant malaria.

A. Amato; Olivo Miotto; Charles J. Woodrow; Jacob Almagro-Garcia; Ipsita Sinha; Susana Campino; Daniel Mead; Eleanor Drury; Mihir Kekre; Mandy Sanders; Alfred Amambua-Ngwa; Chanaki Amaratunga; Lucas Amenga-Etego; V. Andrianaranjaka; Tobias O. Apinjoh; Elizabeth A. Ashley; Sarah Auburn; Gordon A. Awandare; V. Baraka; Alyssa E. Barry; Maciej F. Boni; Steffen Borrmann; Teun Bousema; OraLee H. Branch; Peter C. Bull; Kesinee Chotivanich; David J. Conway; Alister Craig; Nicholas P. J. Day; A. Djimdé

The current epidemic of artemisinin resistant Plasmodium falciparum in Southeast Asia is the result of a soft selective sweep involving at least 20 independent kelch13 mutations. In a large global survey, we find that kelch13 mutations which cause resistance in Southeast Asia are present at low frequency in Africa. We show that African kelch13 mutations have originated locally, and that kelch13 shows a normal variation pattern relative to other genes in Africa, whereas in Southeast Asia there is a great excess of non-synonymous mutations, many of which cause radical amino-acid changes. Thus, kelch13 is not currently undergoing strong selection in Africa, despite a deep reservoir of variations that could potentially allow resistance to emerge rapidly. The practical implications are that public health surveillance for artemisinin resistance should not rely on kelch13 data alone, and interventions to prevent resistance must account for local evolutionary conditions, shown by genomic epidemiology to differ greatly between geographical regions.


Antimicrobial Agents and Chemotherapy | 2001

Bioavailability and Preliminary Clinical Efficacy of Intrarectal Artesunate in Ghanaian Children with Moderate Malaria

Sanjeev Krishna; T. I. M. Planche; Tsiri Agbenyega; Charles J. Woodrow; Dan Agranoff; George Bedu-Addo; Alex K. Owusu-Ofori; John Adabie Appiah; Surash Ramanathan; Sharif Mahsufi Mansor; Visweswaran Navaratnam

ABSTRACT We report the first detailed pharmacokinetic assessment of intrarectal (i.r.) artesunate (ARS) in African children. Artesunate was given intravenously (i.v.; 2.4 mg/kg of body weight) and i.r. (10 or 20 mg/kg formulated as 50- or 200-mg suppositories [Rectocaps]) in a crossover study design to 34 Ghanaian children with moderate falciparum malaria. The median relative bioavailability of dihydroartemisinin (DHA), the active antimalarial metabolite of ARS, was higher in the low-dose i.r. group (10 mg/kg) than in the high-dose i.r. group (20 mg/kg) (58 versus 23%; P = 0.018). There was wide interpatient variation in the area under the concentration-time curve after i.r. ARS administration (up to 9-fold in the high-dose group and 20-fold in the low-dose group). i.r. administered ARS was more rapidly absorbed in the low-dose group than the high-dose group (median [range] absorption half-lives, 0.7 h [0.3 to 1.24 h] versus 1.1 h [0.6 to 2.7 h] [P = 0.023]. i.r. administered ARS was eliminated with a median (range) half-life of 0.8 h (0.4 to 2.7 h) (low-dose group and 0.9 h (0.1 to 2.5 h) (high-dose group) (P = 1). The fractional clearances of DHA were 3.9, 2.6, and 1.5 liters/kg/h for the 20-mg/kg, 10-mg/kg and i.v. groups, respectively (P = 0.001 andP = 0.06 for the high-and low-dose i.r. groups compared with the i.v. groups, respectively). The median volumes of distribution for DHA were 1.5 liters kg (20 mg/kg, i.r. group), 1.8 liters/kg (10 mg/kg, i.r. group), and 0.6 liters/kg (i.v. group) (P< 0.05 for both i.r. groups compared with the i.v. group). Parasite clearance kinetics were comparable in all treatment groups. i.r. administered ARS may be a useful alternative to parenterally administered ARS in the management of moderate childhood malaria and should be studied further.


Clinical Infectious Diseases | 2016

Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai–Myanmar Border (2003–2013): The Role of Parasite Genetic Factors

Aung Pyae Phyo; Elizabeth A. Ashley; Timothy J. C. Anderson; Zbynek Bozdech; Verena I. Carrara; Kanlaya Sriprawat; Shalini Nair; Marina White; Jerzy Dziekan; Clare Ling; Stephane Proux; Kamonchanok Konghahong; Atthanee Jeeyapant; Charles J. Woodrow; Mallika Imwong; Rose McGready; Khin Maung Lwin; Nicholas P. J. Day; Nicholas J. White; François Nosten

The pivotal factor leading to the declining efficacy of the artemisinin-based combination on the Thailand–Myanmar border (mefloquine–artesunate) to a clinically unacceptable level is the increasing local prevalence of K13 mutations superimposed onto a long-standing background of Pfmdr1 amplification.

Collaboration


Dive into the Charles J. Woodrow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge