Charles K. Kaufman
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles K. Kaufman.
Development | 2011
Christian Mosimann; Charles K. Kaufman; Pulin Li; Emily Pugach; Owen J. Tamplin; Leonard I. Zon
Molecular genetics approaches in zebrafish research are hampered by the lack of a ubiquitous transgene driver element that is active at all developmental stages. Here, we report the isolation and characterization of the zebrafish ubiquitin (ubi) promoter, which drives constitutive transgene expression during all developmental stages and analyzed adult organs. Notably, ubi expresses in all blood cell lineages, and we demonstrate the application of ubi-driven fluorophore transgenics in hematopoietic transplantation experiments to assess true multilineage potential of engrafted cells. We further generated transgenic zebrafish that express ubiquitous 4-hydroxytamoxifen-controlled Cre recombinase activity from a ubi:creERt2 transgene, as well as ubi:loxP-EGFP-loxP-mCherry (ubi:Switch) transgenics and show their use as a constitutive fluorescent lineage tracing reagent. The ubi promoter and the transgenic lines presented here thus provide a broad resource and important advancement for transgenic applications in zebrafish.
Science | 2016
Charles K. Kaufman; Christian Mosimann; Zi Peng Fan; Song Yang; Andrew J. Thomas; Julien Ablain; Justin L. Tan; Rachel Fogley; Ellen van Rooijen; Elliott J. Hagedorn; Christie Ciarlo; Richard M. White; Dominick Matos; Ann-Christin Puller; Cristina Santoriello; Eric C. Liao; Richard A. Young; Leonard I. Zon
Visualizing the beginnings of melanoma In cancer biology, a tumor begins from a single cell within a group of precancerous cells that share genetic mutations. Kaufman et al. used a zebrafish melanoma model to visualize cancer initiation (see the Perspective by Boumahdi and Blanpain). They used a fluorescent reporter that specifically lit up neural crest progenitors that are only present during embryogenesis or during adult melanoma tumor formation. The appearance of this tumor correlated with a set of gene regulatory elements, called super-enhancers, whose identification and manipulation may prove beneficial in detecting and preventing melanoma initiation. Science, this issue p. 10.1126/science.aad2197; see also p. 453 Melanocytes with oncogenic or tumor suppressor mutations revert to expressing the crestin gene early in melanoma formation. [Also see Perspective by Boumahdi and Blanpain] INTRODUCTION The “cancerized field” concept posits that cells in a given tissue sharing an oncogenic mutation are cancer-prone, yet only discreet clones within the field initiate tumors. Studying the process of cancer initiation has remained challenging because of (i) the rarity of these events, (ii) the difficulty of visiualizing initiating clones in living organisms, and (iii) the transient nature of a newly transformed clone emerging before it expands to form an early tumor. A more complete understanding of the molecular processes that regulate cancer initiation could provide important prognostic information about which precancerous lesions are most prone to becoming cancer and also implicate druggable molecular pathways that, when inhibited, may prevent the cancer from ever starting. RATIONALE The majority of benign nevi carry oncogenic BRAFV600E mutations and can be considered a cancerized field of melanocytes, but they only rarely convert to melanoma. In an effort to define events that initiate cancer, we used a melanoma model in the zebrafish in which the human BRAFV600E oncogene is driven by the melanocyte-specific mitfa promoter. When bred into a p53 mutant background, these fish develop melanoma tumors over the course of many months. The zebrafish crestin gene is expressed embryonically in neural crest progenitors (NCPs) and is specifically reexpressed only in melanoma tumors, making it an ideal candidate for tracking melanoma from initiation onward. RESULTS We developed a crestin:EGFP reporter that recapitulates the embryonic neural crest expression pattern of crestin and its expression in melanoma tumors. We show through live imaging of transgenic zebrafish crestin reporters that within a cancerized field (BRAFV600E-mutant; p53-deficient), a single melanocyte reactivates the NCP state, and this establishes that a fate change occurs at melanoma initiation in this model. Early crestin+ patches of cells expand and are transplantable in a manner consistent with their possessing tumorigenic activity, and they exhibit a gene expression pattern consistent with the NCP identity readout by the crestin reporter. The crestin element is regulated by NCP transcription factors, including sox10. Forced sox10 overexpression in melanocytes accelerated melanoma formation, whereas CRISPR/Cas9 targeting of sox10 delayed melanoma onset. We show activation of super-enhancers at NCP genes in both zebrafish and human melanomas, identifying an epigenetic mechanism for control of this NCP signature leading to melanoma. CONCLUSION This work using our zebrafish melanoma model and in vivo reporter of NCP identity allows us to see cancer from its birth as a single cell and shows the importance of NCP-state reemergence as a key event in melanoma initiation from a field of cancer-prone melanocytes. Thus, in addition to the typical fixed genetic alterations in oncogenes and tumor supressors that are required for cancer development, the reemergence of progenitor identity may be an additional rate-limiting step in the formation of melanoma. Preventing NCP reemergence in a field of cancer-prone melanocytes may thus prove therapeutically useful, and the association of NCP genes with super-enhancer regulatory elements implicates the associated druggable epigenetic machinery in this process. Neural crest reporter expression in melanoma. The crestin:EGFP transgene is specifically expressed in melanoma in BRAFV600E/p53 mutant melanoma-prone zebrafish. (Top) A single cell expressing crestin:EGFP expands into a small patch of cells over the course of 2 weeks, capturing the initiation of melanoma formation (bracket). (Bottom) A fully formed melanoma specifically expresses crestin:EGFP, whereas the rest of the fish remains EGFP-negative. The “cancerized field” concept posits that cancer-prone cells in a given tissue share an oncogenic mutation, but only discreet clones within the field initiate tumors. Most benign nevi carry oncogenic BRAFV600E mutations but rarely become melanoma. The zebrafish crestin gene is expressed embryonically in neural crest progenitors (NCPs) and specifically reexpressed in melanoma. Live imaging of transgenic zebrafish crestin reporters shows that within a cancerized field (BRAFV600E-mutant; p53-deficient), a single melanocyte reactivates the NCP state, revealing a fate change at melanoma initiation in this model. NCP transcription factors, including sox10, regulate crestin expression. Forced sox10 overexpression in melanocytes accelerated melanoma formation, which is consistent with activation of NCP genes and super-enhancers leading to melanoma. Our work highlights NCP state reemergence as a key event in melanoma initiation.
Nature Protocols | 2009
Charles K. Kaufman; Richard M. White; Leonard I. Zon
Chemical genetic screening can be described as a discovery approach in which chemicals are assayed for their effects on a defined biological system. The zebrafish, Danio rerio, is a well-characterized and genetically tractable vertebrate model organism that produces large numbers of rapidly developing embryos that develop externally. These characteristics allow for flexible, rapid and scalable chemical screen design using the zebrafish. We describe a protocol for screening compounds from a chemical library for effects on early zebrafish development using an automated in situ based read-out. As screenings are carried out in the context of a complete, developing organism, this approach allows for a more comprehensive analysis of the range of a chemicals effects than that provided by, for example, a cell culture-based or in vitro biochemical assay. Using a 24-h chemical treatment, one can complete a round of screening in 6 d.
Molecular and Cellular Biology | 2002
Charles K. Kaufman; Satrajit Sinha; Diana Bolotin; Jie Fan; Elaine Fuchs
ABSTRACT In this report, we explored the mechanisms underlying keratinocyte-specific and differentiation-specific gene expression in the skin. We have identified five keratinocyte-specific, open chromatin regions that exist within the 6 kb of 5′ upstream regulatory sequence known to faithfully recapitulate the strong endogenous keratin 5 (K5) promoter and/or enhancer activity. One of these, DNase I-hypersensitive site (HSs) 4, was unique in that it acted independently to drive abundant and keratinocyte-specific reporter gene activity in culture and in transgenic mice, despite the fact that it was not essential for K5 enhancer activity. We have identified evolutionarily conserved regulatory elements and a number of their associated proteins that bind to this compact and complex enhancer element. The 125-bp 3′ half of this element (referred to as 4.2) is by far the smallest known strong enhancer element possessing keratinocyte-specific activity in vivo. Interestingly, its activity is restricted to a subset of progeny of K5-expressing cells located within the sebaceous gland. The other half of HSs 4 (termed 4.1) possesses activity to suppress sebocyte-specific expression and induce expression in the channel (inner root sheath) cells surrounding the hair shaft. Our findings lead us to a view of keratinocyte gene expression which is determined by multiple regulatory modules, many of which contain AP-2 and/or Sp1/Sp3 binding sites for enhancing expression in skin epithelium, but which also harbor one or more unique sites for the binding of factors which determine specificity. Through mixing and matching of these modules, additional levels of specificity are obtained, indicating that both transcriptional repressors and activators govern the specificity.
Journal of Biological Chemistry | 1997
Paul J. Cullen; Charles K. Kaufman; William C. Bowman
To begin to characterize biochemically the transcriptional activation systems in photosynthetic bacteria, theRhodobacter capsulatus RNA polymerase (RNAP) that contains the ς70 factor (R. capsulatusRNAP/ς70) was purified and characterized using two classical ς70 type promoters, the bacteriophage T7A1 and the RNA I promoters. Transcription from these promoters was sensitive to rifampicin, RNase, and monoclonal antibody 2G10 (directed against the Escherichia coli ς70 subunit). Specific transcripts were detected in vitro for R. capsulatus cytochrome c 2(cycA) and fructose-inducible (fruB) promoters and genes induced in photosynthesis (puf andpuc) and bacteriochlorophyll biosynthesis (bchC). Alignment of these natural promoters activated byR. capsulatus RNAP/ς70 indicated a preference for the sequence TTGAC at the −35 region for strong in vitro transcription. To test the −35 recognition pattern, theR. capsulatus nifA1 promoter, which exhibits only three of the five consensus nucleotides at the −35 region, was mutated to four and five of the consensus nucleotides. Although the nifA1wild type promoter showed no transcription, the double mutated promoter exhibited high levels of in vitro transcription by the purified R. capsulatus RNAP/ς70 enzyme. Similarities and differences between the RNAPs and the promoters ofR. capsulatus and E. coli are discussed.
Cancer Research | 2015
Silja Heilmann; Kajan Ratnakumar; Erin M. Langdon; Emily R. Kansler; Isabella S. Kim; Nathaniel R. Campbell; Elizabeth B. Perry; Amy J. McMahon; Charles K. Kaufman; Ellen van Rooijen; William R. Lee; Christine A. Iacobuzio-Donahue; Richard O. Hynes; Leonard I. Zon; Joao B. Xavier; Richard M. White
Metastasis is the defining feature of advanced malignancy, yet remains challenging to study in laboratory environments. Here, we describe a high-throughput zebrafish system for comprehensive, in vivo assessment of metastatic biology. First, we generated several stable cell lines from melanomas of transgenic mitfa-BRAF(V600E);p53(-/-) fish. We then transplanted the melanoma cells into the transparent casper strain to enable highly quantitative measurement of the metastatic process at single-cell resolution. Using computational image analysis of the resulting metastases, we generated a metastasis score, μ, that can be applied to quantitative comparison of metastatic capacity between experimental conditions. Furthermore, image analysis also provided estimates of the frequency of metastasis-initiating cells (∼1/120,000 cells). Finally, we determined that the degree of pigmentation is a key feature defining cells with metastatic capability. The small size and rapid generation of progeny combined with superior imaging tools make zebrafish ideal for unbiased high-throughput investigations of cell-intrinsic or microenvironmental modifiers of metastasis. The approaches described here are readily applicable to other tumor types and thus serve to complement studies also employing murine and human cell culture systems.
Wiley Interdisciplinary Reviews-Developmental Biology | 2012
Owen J. Tamplin; Richard M. White; Lili Jing; Charles K. Kaufman; Scott A. Lacadie; Pulin Li; Alison M. Taylor; Leonard I. Zon
Phenotype‐driven chemical genetic screens in zebrafish have become a proven approach for both dissection of developmental mechanisms and discovery of potential therapeutics. A library of small molecules can be arrayed into multiwell plates containing zebrafish embryos. The embryo becomes a whole organism in vivo bioassay that can produce a phenotype upon treatment. Screens have been performed that are based simply on the morphology of the embryo. Other screens have scored complex phenotypes using whole mount in situ hybridization, fluorescent transgenic reporters, and even tracking of embryo movement. The availability of many well‐characterized zebrafish mutants has also enabled the discovery of chemical suppressors of genetic phenotypes. Importantly, the application of chemical libraries that already contain FDA‐approved drugs has allowed the rapid translation of hits from zebrafish chemical screens to clinical trials. WIREs Dev Biol 2012, 1:459–468. doi: 10.1002/wdev.37
Genome Biology | 2013
Jennifer Yen; Richard M. White; David C. Wedge; Peter Van Loo; Jeroen de Ridder; Amy Capper; Jennifer Richardson; David Jones; Keiran Raine; Ian R. Watson; Chang-Jiun Wu; Jiqiu Cheng; Inigo Martincorena; Serena Nik-Zainal; Laura Mudie; Yves Moreau; John Marshall; Manasa Ramakrishna; Patrick Tarpey; Adam Shlien; Ian Whitmore; Steve Gamble; Calli Latimer; Erin M. Langdon; Charles K. Kaufman; Mike Dovey; Alison M. Taylor; Andy Menzies; Stuart McLaren; Sarah O’Meara
BackgroundMelanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process.ResultsTo decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAFV600E or NRASQ61K driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAFV600E and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway.ConclusionThis is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation.
Chemistry & Biology | 2014
Yawei Kong; Michael Grimaldi; Eugene Curtin; Max Dougherty; Charles K. Kaufman; Richard M. White; Leonard I. Zon; Eric C. Liao
Cranial neural crest (CNC) cells are patterned and coalesce to facial prominences that undergo convergence and extension to generate the craniofacial form. We applied a chemical genetics approach to identify pathways that regulate craniofacial development during embryogenesis. Treatment with the nitric oxide synthase inhibitor 1-(2-[trifluoromethyl] phenyl) imidazole (TRIM) abrogated first pharyngeal arch structures and induced ectopic ceratobranchial formation. TRIM promoted a progenitor CNC fate and inhibited chondrogenic differentiation, which were mediated through impaired nitric oxide (NO) production without appreciable effect on global protein S-nitrosylation. Instead, TRIM perturbed hox gene patterning and caused histone hypoacetylation. Rescue of TRIM phenotype was achieved with overexpression of histone acetyltransferase kat6a, inhibition of histone deacetylase, and complementary NO. These studies demonstrate that NO signaling and histone acetylation are coordinated mechanisms that regulate CNC patterning, differentiation, and convergence during craniofacial morphogenesis.
eLife | 2017
D Hockman; Alan J. Burns; Gerhard Schlosser; Kp Gates; Benjamin Jevans; A Mongera; S Fisher; Gokhan Unlu; Ela W. Knapik; Charles K. Kaufman; Christian Mosimann; Leonard I. Zon; Joseph J. Lancman; Pds Dong; H Lickert; Abigail S. Tucker; Clare V. H. Baker
The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes – carotid body glomus cells, and ‘pulmonary neuroendocrine cells’ (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive ‘neuroepithelial cells’ (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches. DOI: http://dx.doi.org/10.7554/eLife.21231.001