Charles K. Shearer
University of New Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles K. Shearer.
Geology | 2012
Francis M. McCubbin; Erik H. Hauri; Stephen M. Elardo; Kathleen E. Vander Kaaden; Jianhua Wang; Charles K. Shearer
The search for water in our solar system is one of the primary driving forces for planetary science and exploration because water plays an important role in many geologic processes and is required for biologic processes as we currently understand them. Excluding Earth, Mars is the most promising destination in the inner solar system to find water, as it is undoubtedly responsible for shaping many geomorphologic features observed on the present-day martian surface; however, the water content of the martian interior is currently unresolved. Much of our information about the martian interior comes from studies of the basaltic martian meteorites (shergottites). In this study we examined the water contents of magmatic apatites from a geochemically enriched shergottite (the Shergotty meteorite) and a geochemically depleted shergottite (the Queen Alexandria Range 94201 meteorite). From these data, we determined that there was little difference in water contents between the geochemically depleted and enriched shergottite magmas. The water contents of the apatite imply that shergottite parent magmas contained 730–2870 ppm H 2 O prior to degassing. Furthermore, the martian mantle contains 73–290 ppm H 2 O and underwent hydrous melting as recently as 327 Ma. In the absence of plate tectonics, the presence of water in the interior of Mars requires planetary differentiation under hydrous conditions. This is the first evidence of significant hydrogen storage in a planetary interior at the time of core formation, and this process could support elevated H abundances in the interiors of other terrestrial bodies like the Moon, Mercury, Venus, large differentiated asteroids, and Earth.
American Mineralogist | 1999
Charles K. Shearer; James J. Papike
Abstract Although incomplete because of the imperfect and somewhat random sampling of rock types by the Apollo and Luna missions (1969-1976), the history of lunar magmatism has been reconstructed by numerous researchers over the past three decades. These reconstructions have illustrated the continous nature of lunar magmatism (from 4.6 to ~2.0 Ga) and the large influence of early differentiation and catastrophic bombardment on lunar mantle dynamics, magmatism, and eruptive style. In this review, we group magmatism into multiple stages of activity based on sampled rock types and evaluate the models for each stage. Stage I is early lunar differentiation and associated magmatism. Partial melting of the Moon soon after accretion was responsible for producing an anorthositic crust and a differentiated lunar interior. The extent of lunar melting and mantle processing depends strongly on the mechanisms that induced melting. Estimates for the tune over which melting and crystallization occurred range from tens to hundreds of millions of years. Stage 2 is the disruption of lunar magma ocean cumulates. Soon after the crystallization of most of the lunar magma ocean, the cumulate pile experienced gravitational overturn. This resulted in transport of late-forming cumulates into the deep lunar mantle and mixing of magma ocean cumulates on a variety of scales. Stage 3 is the post-magma ocean highland magmatism. Whereas the ferroan anorthositic crust was probably produced during the crystallization of a magma ocean, the slightly younger Mg suite and alkali suite plutonie rocks may have been generated by decompressional melting of early magma ocean cumulates during cumulate pile overturn. A KREEP and crustal signature was incorporated into these primitive basaltic magmas through assimilation near the base of the lunar crust or through melting of a hybridized mantle. The alkali suite could represent either the differentiation products of Mg suite parental magmas or a separate, but contemporaneous episode of basaltic magmatism. Stage 4 is pre-basin voleanism. Sample analysis and remote sensing data indicate that early lunar voleanism (KREEP basalts and high-alumina basalts) was contemporaneous with periods of liiglilands plutonism and catastrophic bombardment of the hmar surface. The relationship between early stages of lunar voleanism and the contemporaneous plutonism is not clear. The KREEP basalts may be volcanic equivalents to both the Mg suite and alkali suite. Stage 5 is the late remelting of magma ocean cumulates and eruption of mare basalts. Basin-associated eruption of mare basalts occurred during and following the late stages of catastrophic bombardment. This volcanic activity was possibly an extension of the thermal event that initiated pre-basin voleanism. Mare basalts exhibit a wide range of composition resulting from nearsurface fractionation of chemically distinct primary basaltic magmas. Most likely, mare basalts were produced by small to moderate degrees of partial melting of hybrid cumulate sources in the deep lunar mantle. Alternatively, the mixed chemical signatures observed in many mare basalts may be interpreted as indicating assimilation of late-stage, evolved cumulates by melts produced deep in the cumulate pile. The wide range of compositions exhibited by the mare basalts compared with earlier episodes of basaltic magmatism may reflect the thermal regime in the lunar mantle that limited the extent of partial melting and melt-source homogenization.
Geochimica et Cosmochimica Acta | 1993
Charles K. Shearer; J.J. Papike
Abstract It is widely accepted that basaltic magmas are products of partial fusion of periodotite within planetary mantles. As such, they provide valuable insights into the composition, structure, and processes of planetary interiors. Those compositions which approach primary melt compositions provide the most direct information about planetary interiors and serve as a starting point to understand basaltic evolution. Within the collection of lunar samples returned by the Apollo and Luna missions are homogeneous, picritic glass beads of volcanic origin. These picritic glasses are our closest approximations to primary magmas. As such, these glass beads provide a unique perspective concerning the origin of mare basalts, the characteristics of the lunar interior, and processes in the early differentiation of the Moon. We have obtained trace element data for these picritic glasses using SIMS techniques. These data and literature isotopic and experimental data on the picritic glasses are placed within the framework of mare basaltic magmatism. The volcanic glasses are very diverse in their trace element characteristics, for example, they have a wide range of REE pattern shapes and concentrations. Like the crystalline mare basalts, all picritic glasses have a negative Eu anomaly. Unlike the crystalline mare basalts, there is little correlation between the size of the Eu anomaly and overall REE concentrations. Trace element differences among the various glasses suggests that a KREEP component was incorporated into their mantle source. This implies large scale mixing of the “Lunar Magma Ocean”-derived cumulate pile. Subtle differences among glasses suggest that local mixing of sources may also have been an important process. Preservation of subtle chemical differences in the picritic glasses and crystalline basalts may be interpreted as indicating that they were produced by small to moderate degrees of partial melting and that the lunar mantle did not experience extensive melting during episodes of mare volcanism. Several lines of evidence are consistent with the view that the picritic glasses were derived from mantle sources that were compositionally distinct from the sources for crystalline mare basalts. These are parallel, but no common, liquid lines of descent; chemical differences between picritic glasses and the more primitive crystalline mare basalts; experimental studies indicating that the picritic glasses are multiply saturated at depths greater than that of the mare basalts; differences in lead isotopic data; and the mode of eruption (i.e., fire fountaining for glass beads). These data also provide circumstantial evidence that suggests that the picritic glasses were derived from a source somewhat more volatile-rich than that of the mare basalts. Several petrogenetic models are suggested by the trace element characteristics of the picritic glasses: 1. (1) Partial melting of heterogeneous lunar mantle at depths greater than 300 km to produce the parental magmas (picritic) for both the mare basalts and picritic glasses. Picritic magmas represented by glass beads were erupted to the surface with small degrees of fractional crystallization while mare basalts were produced by larger degrees of fractional crystallization (15–30%) of similar (but not identical) picritic magmas. 2. (2) Picritic magmas represented by the glass beads were generated at depths greater than 400 km in a volatile-enriched (relative to the mare basalt source) heterogeneous mantle while mare basalts are fractional crystallization products of picritic magmas generated at depths of less than 400 km. 3. (3) The picritic magmas represented by the glass beads represent polybaric melting that initiated at depths of at least 1000 km. A primitive mantle component or less processed cumulate mantle components may have been involved in the generation of the picritic glasses in any of these models.
Archive | 1993
W. Randall Van Schmus; M. E. Bickford; J. Lawford Anderson; E. Erik Bender; Raymond R. Anderson; Paul W. Bauer; James M. Robertson; Samuel A. Bowring; Kent C. Condie; Rodger E. Denison; M. Charles Gilbert; Jeffrey A. Grambling; Christopher K. Mawer; Charles K. Shearer; William J. Hinze; Karl E. Karlstrom; E.B. Kisvarsanyi; Edward G. Lidiak; John C. Reed; Paul K. Sims; Odgen Tweto; Leon T. Silver; Samuel B. Treves; Michael L. Williams; Joseph L. Wooden
Research on the Precambrian basement of North America over the past two decades has shown that Archean and earliest Proterozoic evolution culminated in suturing of Archean cratonic elements and pre-1.80-Ga Proterozoic terranes to form the Canadian Shield at about 1.80 Ga (Hoffman, 1988,1989a, b). We will refer to this part of Laurentia as the Hudsonian craton (Fig. 1) because it was fused together about 1.80 to 1.85 Ga during the Trans-Hudson and Penokean orogenies (Hoffman, 1988). The Hudsonian craton, including its extensions into the United States (Chapters 2 and 3, this volume), formed the foreland against which 1.8- to 1.6-Ga continental growth occurred, forming the larger Laurentia (Hoffman, 1989a, b). Geologic and geochronologic studies over the past three decades have shown that most of the Precambrian in the United States south of the Hudsonian craton and west of the Grenville province (Chapter 5) consists of a broad northeast to east-northeast-trending zone of orogenic provinces that formed between 1.8 and 1.6 Ga. This zone, including extensions into eastern Canada, comprises or hosts most rock units of this age in North America as well as extensive suites of 1.35- to 1.50-Ga granite and rhyolite. This addition to the Hudsonian Craton is referred to in this chapter as the Transcontinental Proterozoic provinces (Fig. 1); the plural form is used to denote the composite nature of this broad region. The Transcontinental Proterozoic provinces consist of many distinct lithotectonic entities that can be defined on the basis of regional lithology, regional structure, U-Pb ages from zircons, Sr-Nd-Pb isotopic signatures, and regional geophysical anomalies.
Science | 2010
Zachary D. Sharp; Charles K. Shearer; Kevin D. McKeegan; J. D. Barnes; Y. Q. Wang
Over the Moon Based on recent analyses of lunar rocks, it has been argued that the lunar interior contained much more water than previously thought. Sharp et al. (p. 1050, published online 5 August) measured the chlorine isotope content of lunar samples returned by the Apollo missions and found that the spread in their chlorine isotope composition is 25-fold greater than for rocks and minerals that have been measured from Earth and meteorites. This result implies that the hydrogen content of the Moon (and therefore its water content) is much lower than suggested by recent studies. The range of chlorine isotope values of the Moon is distinct from those of Earth and meteorites, indicating that the Moon is dry. Arguably, the most striking geochemical distinction between Earth and the Moon has been the virtual lack of water (hydrogen) in the latter. This conclusion was recently challenged on the basis of geochemical data from lunar materials that suggest that the Moon’s water content might be far higher than previously believed. We measured the chlorine isotope composition of Apollo basalts and glasses and found that the range of isotopic values [from –1 to +24 per mil (‰) versus standard mean ocean chloride] is 25 times the range for Earth. The huge isotopic spread is explained by volatilization of metal halides during basalt eruption—a process that could only occur if the Moon had hydrogen concentrations lower than those of Earth by a factor of ~104 to 105, implying that the lunar interior is essentially anhydrous.
American Mineralogist | 2005
J.J. Papike; J. M. Karner; Charles K. Shearer
Abstract This is a comparative planetary mineralogy study emphasizing the valence-state partitioning of Cr, Fe, Ti, and V over crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. The sites that accommodate these cations are the M2 site (6 to 8-coordinated) and M1 site (6-coordinated) in pyroxene, the M2 site (6- to 8-coordinated) and M1 (6-coordinated site) in olivine, and the tetrahedral and octahedral sites in spinel. The samples we studied are basalts from Earth, Moon, and Mars, and range in oxygen fugacity conditions from IW-2 (Moon) to IW+6 (Earth), with Mars somewhere in between (IW to IW+2). The significant elemental valence-states at these fO₂ conditions are (from low to high fO₂): Ti4+, V3+, Fe2+, Cr2+, Cr3+, V4+, and Fe3+. V2+ and Ti3+ play a minor role in the phases considered for the Moon, and are found in very low concentrations. V5+ plays a minor role in these phases in oxidized terrestrial basalts because it is probably lower in abundance than V4+, and has an ionic radius that is so small (0.054 nm, 6-coordinated), that it is almost at the lower limit for octahedral coordination, and can even be tetrahedrally coordinated. The role of Cr2+ in the Moon is significant, as Cr2+ predominates in basaltic melts at fO₂ less than IW-1. Lunar olivine has been found to contain mostly Cr2+, whereas coexisting pyroxene contains mostly Cr3+. Fe3+ is very important in Earth, less so in Mars, and nonexistent in the Moon. The importance of the Fe2+ to Fe3+ transition cannot be overstated and, indeed, their crystal-chemical differences, in terms of behavior (based on size and charge), are similar to the differences between Mg and Al. We note that for pyroxene in six of the seven terrestrial suites we studied, Fe3+ (in the M1 site) coupled with Al (in the tetrahedral site) is one of the two most important charge-balance substitutions. This substitution is of lesser importance in Mars and does not exist in lunar basalts.
Geochimica et Cosmochimica Acta | 2003
Kevin Righter; Charles K. Shearer
Abstract Excesses of 182W have previously been measured in samples from the Moon and Mars, and can be derived from high Hf/W regions in their interiors during their early histories. Although planetary mantles will have superchondritic Hf/W after core formation, the extent to which high Hf/W regions could be generated by magmatic fractionation has not been evaluated. In order to address the latter possibility, we have carried out experiments from 100 MPa to 10.0 GPa, 1150 to 1850°C, at oxygen fugacities near the IW (iron-wustite) buffer, and measured partition coefficients for W and Hf for plagioclase-liquid, olivine-liquid, orthopyroxene-liquid, clinopyroxene-liquid, garnet-liquid, and metal-liquid pairs. Clinopyroxene and garnet are both capable of fractionating Hf from W during magmatic crystallization or mantle melting, and minor variations in the measured D’s can be attributed to crystal chemical effects. Excesses of 182W and 142Nd in lunar samples can be explained by fractionation of Hf from W, and Sm from Nd (by ilmenite and clinopyroxene) during crystallization of the latest stages of a lunar magma ocean. Correlations of eW with eNd in martian samples could be a result of early silicate fractionation in the martian mantle (clinopyroxene and/or garnet).
American Mineralogist | 2003
J.J. Papike; J. M. Karner; Charles K. Shearer
Abstract Many basaltic meteorites are being discovered in old and new meteorite suites including those from cold- deserts (e.g., Antarctica) and hot-desert environments. It is important to establish the specific planetary body source. Proven techniques for establishing planetary parentage include stableisotopic signatures (especially oxygen), certain elemental ratios in bulk samples, and certain elemental ratios in specific minerals. Some of these techniques are expensive, require considerable sample preparation, and are adversely affected by weathering processes on the parent body or on Earth. We have been seeking key major and minor elemental ratios (in pyroxene, olivine, and feldspar) that can be measured by the electron microprobe on standard thin sections. These ratios may be preserved in unweathered portions of mineral grains and thus “see through” weathering processes. In addition, if the sample is too small to provide a representative bulk composition, it may still have key information recorded in individual minerals. We have found that some of the most useful chemical parameters are Fe/Mn (atomic) in olivine or pyroxene and the percent anorthite (%An) in plagioclase solid solutions. A plot of Fe/Mn in pyroxene and/or olivine verses %An defines compositional fields that are significantly different for Earth, Mars, Moon, 4 Vesta, and the angrite parent body. This method may be especially powerful when combined with oxygen isotope data.
Geology | 2014
Romain Tartèse; M. Anand; Francis M. McCubbin; Stephen M. Elardo; Charles K. Shearer; Ian A. Franchi
Recent re-analyses of lunar samples have undoubtedly measured indigenous water, challenging the paradigm of a “dry” Moon, and arguing that some portions of the lunar interior are as wet as some regions of the Earth’s mantle and that water in both planetary bodies likely share a common origin. Mare basalts indirectly sample the lunar mantle and are affected by petrogenetic processes such as crystallization and degassing that can modify characteristics of indigenous water in primary mantle melts. Analyses of apatite in phosphorus-rich KREEP (K + REE [rare earth elements] + P) basalts may provide more reliable estimates for the water content of lunar magmas, as some apatites likely crystallized before substantial degassing occurred. In lunar KREEP basalt sample 15386, apatite H 2 O content and H isotopic composition suggest that degassing occurred during apatite crystallization, the lowest δD value of 90‰ ± 100‰ representing an upper limit for the isotopic composition of water in the parental magma. Interpretation of the data for KREEP basalt 15386 suggests that this basalt is characterized by relatively elevated H 2 O contents and CI chondrite–type δD values, similar to those proposed for other mare basalts and pyroclastic glasses. On the other hand, most of the apatites in lunar KREEP basalt 72275 and lunar meteorite NWA 773 crystallized before degassing and H isotope fractionation, and their D/H ratios thus directly refl ect those of their source regions. These apatites have an average δD value of –130‰ ± 50‰, suggesting the presence of a water reservoir in the Moon characterized by moderate H 2 O contents and H isotopic composition similar to that of Earth’s interior. These fi ndings imply that signifi cant amounts of water in the Moon were inherited from the proto-Earth, surviving the purported Moon-forming impact event.
American Mineralogist | 1996
C. S. Schwandt; James J. Papike; Charles K. Shearer
Abstract Trace element (REE, Cr, Ti, Y, Y, and Zr) analysis of garnet from the garnet, staurolite, and lower sillimanite zones of an aluminous schist of the Black Hills, South Dakota, indicates that REE zoning varies as a function of grade. Garnet-zone garnet has high concentrations of REEs, Cr, Ti, Y, Y, and Zr in the cores and low concentrations in the rims. Profiles of heavy REEs contain inflections between the cores and rims, which are approximately symmetric about the cores. Staurolite-zone garnet contains cores enriched with Y and heavy REEs, which decrease toward the rim and increase again at the rim edges but to lower concentrations than in the cores. Cr, Y, Ti, Zr, and light REE zoning is less pronounced than heavy REE zoning and is less symmetric about the garnet cores. Almandine-rich garnet of the lower sillimanite zone displays no major element zonation. Trace element (Ti, Cr, Y, and Zr) concentrations are minimal, and the zoning is irregular and not symmetric about the garnet cores. Garnet from all three zones has core-to-rim Fe/(Fe + Mg) profiles that suggest garnet growth was uninterrupted with respect to major element components and that Mn zoning formed by a fractionation process. Analysis of trace element zoning in this garnet reveals that the major element zoning was relatively unaffected by volume-diffusion reequilibration. Trace element zonation of all samples of garnet is best explained by a fractionation mechanism in conjunction with limited intergranular diffusion and changing partition coefficients during garnet growth. Heavy REE partitioning is especially dependent on the major element composition of garnet. This research complements previous research by others on the use of trace elements as metamorphic petrogenetic indicators, which demonstrated the importance of bulk-rock composition and phase assemblage on trace element partitioning.