Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles K. Singleton is active.

Publication


Featured researches published by Charles K. Singleton.


Current Molecular Medicine | 2001

Molecular Mechanisms of Thiamine Utilization.

Charles K. Singleton; Peter R. Martin

Thiamine is required for all tissues and is found in high concentrations in skeletal muscle, heart, liver, kidneys and brain. A state of severe depletion is seen in patients on a strict thiamine-deficient diet in 18 days, but the most common cause of thiamine deficiency in affluent countries is alcoholism. Thiamine diphosphate is the active form of thiamine, and it serves as a cofactor for several enzymes involved primarily in carbohydrate catabolism. The enzymes are important in the biosynthesis of a number of cell constituents, including neurotransmitters, and for the production of reducing equivalents used in oxidant stress defenses and in biosyntheses and for synthesis of pentoses used as nucleic acid precursors. Because of the latter fact, thiamine utilization is increased in tumor cells. Thiamine uptake by the small intestines and by cells within various organs is mediated by a saturable, high affinity transport system. Alcohol affects thiamine uptake and other aspects of thiamine utilization, and these effects may contribute to the prevalence of thiamine deficiency in alcoholics. The major manifestations of thiamine deficiency in humans involve the cardiovascular (wet beriberi) and nervous (dry beriberi, or neuropathy and/or Wernicke-Korsakoff syndrome) systems. A number of inborn errors of metabolism have been described in which clinical improvements can be documented following administration of pharmacological doses of thiamine, such as thiamine-responsive megaloblastic anemia. Substantial efforts are being made to understand the genetic and biochemical determinants of inter-individual differences in susceptibility to development of thiamine deficiency-related disorders and of the differential vulnerabilities of tissues and cell types to thiamine deficiency.


Gene | 1997

Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae

Charles K. Singleton

A positive selection scheme is described that selects for thiamine transporter clones. The scheme is based on the rescue of lethality, under non-permissive conditions, of Saccharomyces cerevisiae strains that are conditional for thiamine biosynthesis and are defective in thiamine transport. Transport defective strains were generated by selection for resistance to the lethal thiamine analog, pyrithiamine. Pyrithiamine resistance was shown to be a recessive, single gene trait that resulted from the mutation of the thiamine transporter gene, as suggested by previous work. Conditional thiamine biosynthesis was generated by cloning THI4, a thiamine biosynthetic gene, into a URA3 containing plasmid and transforming a strain disrupted in THI4. Thus, plating on 5-fluoroorotic acid causes the loss of thiamine synthesis ability. The gene for the yeast thiamine transporter, THI7, was cloned using this scheme. The predicted 598 amino acid transporter is a member of the major facilitator superfamily of transporters and thus possesses 12 transmembrane spanning segments with amino and carboxy termini intracellularly located. Several alterations in the coding region were characterized that result in greatly reduced ability to transport thiamine. The level of transporter mRNA was found to be rapidly and dramatically reduced by the addition of thiamine to the growth medium.


The Enzymes | 1981

10 Type II Restriction Enzymes

Robert D. Wells; Ronald Klein; Charles K. Singleton

Publisher Summary This chapter reviews the status of the enzymology of type II restriction enzymes. These restriction endonucleases have been widely used for gene cloning and mapping, for investigations on gene expression in both prokaryotic and eukaryotic systems, and as models for the study of protein–DNA interactions. A large number of type-II enzymes are significantly useful and widely available, but are poorly understood in biochemical terms. The recognition site of each enzyme is centered around a core di- or tetranucleotide that permits identification of both isoschizomers and specific sequences of interest. All type II restriction endonucleases require Mg2+ as a cofactor, usually at a concentration near 5 mM. These enzymes, although grouped together as site-specific DNA cleavage enzymes, exhibit remarkable diversity. This diversity is evident in both the physical and kinetic properties of each enzyme, as well as whether a particular endonuclease can interact with and cleave methylated DNAs, base-analog containing DNAs, single-stranded DNAs, DNA–RNA hybrids, and noncanonical duplex DNA.


Developmental Biology | 1987

Characterization of genes which are deactivated upon the onset of development in Dictyostelium discoideum

Charles K. Singleton; Russell L. Delude; Clifton E. McPherson

We have identified and begun characterizations of the differential expression of 15 genes whose corresponding mRNA levels decrease during the preaggregative period of the developmental program of Dictyostelium discoideum. Upon the onset of development, the mRNAs decrease from 5- to 1000-fold over the first 8 hr. The rates of loss of each mRNA were similar to one another but distinct, and the decreases were dependent on progress through the developmental program. One exception to this dependency was observed, and the decrease in this mRNA was dependent on the absolute time after initiation of development instead of progress through development. With two exceptions, the decreases in mRNA levels were dependent on developmental conditions and were not seen when cells were shaken in starvation buffer. When the polysomal distributions of each species were examined, three classes were found: most showed no significant shifts off of polysomes upon initiation of development, two were characterized by a 20% shift to nonpolysomal RNA fractions upon development, and two gave a 40-50% shift. Collectively, these characterizations reveal differences in behavior which suggest that deactivation of genes upon initiation of development in Dictyostelium involves more than one regulatory pathway.


Metabolic Brain Disease | 1995

Molecular Genetics of Transketolase in the Pathogenesis of the Wernicke-Korsakoff Syndrome

Peter R. Martin; Brian A. McCool; Charles K. Singleton

Thiamine deficiency, a frequent complication of alcoholism, plays an important role in the pathogenesis of the Wernicke-Korsakoff syndrome [WKS]. Previous work by a number of investigators has implicated the thiamine-utilizing enzyme transketolase [Tk] as being involved mechanistically in the genetic predisposition to WKS. In particular, Tk derived from fibroblasts has been found to have an increased Km app for its cofactor thiamine pyrophosphate [TPP] and/or exist in different isoelectric forms in alcoholic patients with WKS as compared with unaffected individuals. We have demonstrated that these differences are not due to different Tk alleles, tissue-specific Tk isozymes, or differential mRNA splicing. These findings point to other mechanisms to explain the biochemical Tk variants, such as differences in assembly of the functional holoenzyme or differences in modification of the primary translation product. Tk assembly or modification, once biochemically characterized, may be found to be subject to genetic variation.


BMC Biochemistry | 2002

Mitochondria from cultured cells derived from normal and thiamine-responsive megaloblastic anemia individuals efficiently import thiamine diphosphate

Qilin Song; Charles K. Singleton

BackgroundThiamine diphosphate (ThDP) is the active form of thiamine, and it serves as a cofactor for several enzymes, both cytosolic and mitochondrial. Isolated mitochondria have been shown to take up thiamine yet thiamine diphosphokinase is cytosolic and not present in mitochondria. Previous reports indicate that ThDP can also be taken up by rat mitochondria, but the kinetic constants associated with such uptake seemed not to be physiologically relevant.ResultsHere we examine ThDP uptake by mitochondria from several human cell types, including cells from patients with thiamine-responsive megaloblastic anemia (TRMA) that lack a functional thiamine transporter of the plasma membrane. Although mitochondria from normal lymphoblasts took up thiamine in the low micromolar range, surprisingly mitochondria from TRMA lymphoblasts lacked this uptake component. ThDP was taken up efficiently by mitochondria isolated from either normal or TRMA lymphoblasts. Uptake was saturable and biphasic with a high affinity component characterized by a Km of 0.4 to 0.6 μM. Mitochondria from other cell types possessed a similar high affinity uptake component with variation seen in uptake capacity as revealed by differences in Vmax values.ConclusionsThe results suggest a shared thiamine transporter for mitochondria and the plasma membrane. Additionally, a high affinity component of ThDP uptake by mitochondria was identified with the apparent affinity constant less than the estimates of the cytosolic concentration of free ThDP. This finding indicates that the high affinity uptake is physiologically significant and may represent the main mechanism for supplying phosphorylated thiamine for mitochondrial enzymes.


Eukaryotic Cell | 2006

Function of ammonium transporter A in the initiation of culmination of development in Dictyostelium discoideum.

Charles K. Singleton; Janet H. Kirsten; Colin J. Dinsmore

ABSTRACT The histidine kinase DhkC controls a phosphorelay involved in regulating the slug versus culmination choice during the multicellular developmental program of Dictyostelium discoideum. When the relay is active, slug migration is favored due to the activation of a cyclic AMP (cAMP) phosphodiesterase and the resultant lowering of the intracellular and extracellular levels of cAMP. Ammonia signaling represents one input into the DhkC phosphorelay, and previous studies indicated that the ammonium transporter C inhibits the relay in response to low ammonia levels. Evidence is presented that another member of the family of ammonium transporters, AmtA, also regulates the slug/culmination choice. Under standard conditions of development, the wild-type strain requires a transitional period of 2 to 3 h to go from fingers to culminants, with some slugs forming and migrating briefly prior to culmination. In contrast, amtA null cells, like cells that lack DhkC, possessed a transitional period of only 1 to 2 h and rarely formed slugs. Disruption of amtA in an amtC null strain overcame the slugger phenotype of that strain and restored its ability to culminate. Strains lacking AmtA were insensitive to the ability of ammonia to promote and prolong slug migration. These findings lead to the proposal that AmtA functions in ammonia sensing as an activator of the DhkC phosphorelay in response to perceived high ammonia levels.


Biochimica et Biophysica Acta | 1997

Aspartate 155 of human transketolase is essential for thiamine diphosphate–magnesium binding, and cofactor binding is required for dimer formation

James J.‐L. Wang; Peter R. Martin; Charles K. Singleton

Active human transketolase is a homodimeric enzyme possessing two active sites, each with a non-covalently bound thiamine diphosphate and magnesium. Both subunits contribute residues at each site which are involved in cofactor binding and in catalysis. His-tagged transketolase, produced in E. coli, was similar to transketolase purified from human tissues with respect to Km apps for cofactor and substrates and with respect to cofactor-dependent hysteresis. Mutation of aspartate 155, corresponding to a conserved aspartate residue among thiamine diphosphate-binding proteins, resulted in an inactive protein which could not bind the cofactor-magnesium complex and which could not dimerize. The results are consistent with the suggestion that aspartate 155 is an important coordination site for magnesium. In support of this interpretation, binding of cofactor by wild type apo-transketolase required the presence of magnesium. Additionally, monomeric apo-his-transketolase required both magnesium and cofactor binding for dimer formation.


BMC Cell Biology | 2008

Subcellular localization of ammonium transporters in Dictyostelium discoideum

Janet H. Kirsten; Yanhua Xiong; Carter T Davis; Charles K. Singleton

BackgroundWith the exception of vertebrates, most organisms have plasma membrane associated ammonium transporters which primarily serve to import a source of nitrogen for nutritional purposes. Dictyostelium discoideum has three ammonium transporters, Amts A, B and C. Our present work used fluorescent fusion proteins to determine the cellular localization of the Amts and tested the hypothesis that the transporters mediate removal of ammonia generated endogenously from the elevated protein catabolism common to many protists.ResultsUsing RFP and YFP fusion constructs driven by the actin 15 promoter, we found that the three ammonium transporters were localized on the plasma membrane and on the membranes of subcellular organelles. AmtA and AmtB were localized on the membranes of endolysosomes and phagosomes, with AmtB further localized on the membranes of contractile vacuoles. AmtC also was localized on subcellular organelles when it was stabilized by coexpression with either the AmtA or AmtB fusion transporter. The three ammonium transporters exported ammonia linearly with regard to time during the first 18 hours of the developmental program as revealed by reduced export in the null strains. The fluorescently tagged transporters rescued export when expressed in the null strains, and thus they were functional transporters.ConclusionUnlike ammonium transporters in most organisms, which import NH3/NH4+ as a nitrogen source, those of Dictyostelium export ammonia/ammonium as a waste product from extensive catabolism of exogenously derived and endogenous proteins. Localization on proteolytic organelles and on the neutral contractile vacuole suggests that Dictyostelium ammonium transporters may have unique subcellular functions and play a role in the maintenance of intracellular ammonium distribution. A lack of correlation between the null strain phenotypes and ammonia excretion properties of the ammonium transporters suggests that it is not the excretion function that is important for coupling ammonia levels to the slug versus culmination choice, but rather a sensor and/or signaling function of these proteins that is important.


BMC Developmental Biology | 2003

IfkA, a presumptive eIF2α kinase of Dictyostelium, is required for proper timing of aggregation and regulation of mound size

Rui Fang; Yanhua Xiong; Charles K. Singleton

BackgroundThe transition from growth to development in Dictyostelium is initiated by amino acid starvation of growing amobae. In other eukaryotes, a key sensor of amino acid starvation and mediator of the resulting physiological responses is the GCN2 protein, an eIF2α kinase. GCN2 downregulates the initiation of translation of bulk mRNA and enhances translation of specific mRNAs by phosphorylating the translation initiation factor eIF2α. Two eIF2α kinases were identified in Dictyostelium and studied herein.ResultsNeither of the eIF2α kinases appeared to be involved in sensing amino acid starvation to initiate development. However, one of the kinases, IfkA, was shown to phosphorylate eIF2α from 1 to 7 hours after the onset of development, resulting in a shift from polysomes to free ribosomes for bulk mRNA. In the absence of the eIF2α phosphorylation, ifkA null cells aggregated earlier than normal and formed mounds and ultimately fruiting bodies that were larger than normal. The early aggregation phenotype in ifkA null cells reflected an apparent, earlier than normal establishment of the cAMP pulsing system. The large mound phenotype resulted from a reduced extracellular level of Countin, a component of the counting factor that regulates mound size. In wild type cells, phosphorylation of eIF2α by IfkA resulted in a specific stabilization and enhanced translational efficiency of countin mRNA even though reduced translation resulted for bulk mRNA.ConclusionsIfkA is an eIF2α kinase of Dictyostelium that normally phosphorylates eIF2α from 1 to 7 hours after the onset of development, or during the preaggregation phase. This results in an overall reduction in the initiation of protein synthesis during this time frame and a concomitant reduction in the number of ribosomes associated with most mRNAs. For some mRNAs, however, initiation of protein synthesis is enhanced or stabilized under the conditions of increased eIF2α phosphorylation. This includes countin mRNA.

Collaboration


Dive into the Charles K. Singleton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge