Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles Kirkby is active.

Publication


Featured researches published by Charles Kirkby.


Physics in Medicine and Biology | 2015

Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions.

Robert D. Stewart; Seth Streitmatter; David C. Argento; Charles Kirkby; John T. Goorley; Greg Moffitt; Tatjana Jevremovic

To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, (137)Cs γ-rays, neutrons and light ions relative to γ-rays from (60)Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that (137)Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from (60)Co (RBEDSB  =  1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than (60)Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as (60)Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer.


Medical Physics | 2015

Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: A Monte Carlo study

Charles Kirkby; Esmaeel Ghasroddashti

PURPOSE Radiation damage to mitochondria has been shown to alter cellular processes and even lead to apoptosis. Gold nanoparticles (AuNPs) may be used to enhance these effects in scenarios where they collect on the outer membranes of mitochondria. A Monte Carlo (MC) approach is used to estimate mitochondrial dose enhancement under a variety of conditions. METHODS The penelope MC code was used to generate dose distributions resulting from photons striking a 13 nm diameter AuNP with various thicknesses of water-equivalent coatings. Similar dose distributions were generated with the AuNP replaced by water so as to estimate the gain in dose on a microscopic scale due to the presence of AuNPs within an irradiated volume. Models of mitochondria with AuNPs affixed to their outer membrane were then generated-considering variation in mitochondrial size and shape, number of affixed AuNPs, and AuNP coating thickness-and exposed (in a dose calculation sense) to source spectra ranging from 6 MV to 90 kVp. Subsequently dose enhancement ratios (DERs), or the dose with the AuNPs present to that for no AuNPs, for the entire mitochondrion and its components were tallied under these scenarios. RESULTS For a representative case of a 1000 nm diameter mitochondrion affixed with 565 AuNPs, each with a 13 nm thick coating, the mean DER over the whole organelle ranged from roughly 1.1 to 1.6 for the kilovoltage sources, but was generally less than 1.01 for the megavoltage sources. The outer membrane DERs remained less than 1.01 for the megavoltage sources, but rose to 2.3 for 90 kVp. The voxel maximum DER values were as high as 8.2 for the 90 kVp source and increased further when the particles clustered together. The DER exhibited dependence on the mitochondrion dimensions, number of AuNPs, and the AuNP coating thickness. CONCLUSIONS Substantial dose enhancement directly to the mitochondria can be achieved under the conditions modeled. If the mitochondrion dose can be directly enhanced, as these simulations show, this work suggests the potential for both a tool to study the role of mitochondria in cellular response to radiation and a novel avenue for radiation therapy in that the mitochondria may be targeted, rather than the nuclear DNA.


Physics in Medicine and Biology | 2016

A method for converting dose-to-medium to dose-to-tissue in Monte Carlo studies of gold nanoparticle-enhanced radiotherapy

B Koger; Charles Kirkby

Gold nanoparticles (GNPs) have shown potential in recent years as a means of therapeutic dose enhancement in radiation therapy. However, a major challenge in moving towards clinical implementation is the exact characterisation of the dose enhancement they provide. Monte Carlo studies attempt to explore this property, but they often face computational limitations when examining macroscopic scenarios. In this study, a method of converting dose from macroscopic simulations, where the medium is defined as a mixture containing both gold and tissue components, to a mean dose-to-tissue on a microscopic scale was established. Monte Carlo simulations were run for both explicitly-modeled GNPs in tissue and a homogeneous mixture of tissue and gold. A dose ratio was obtained for the conversion of dose scored in a mixture medium to dose-to-tissue in each case. Dose ratios varied from 0.69 to 1.04 for photon sources and 0.97 to 1.03 for electron sources. The dose ratio is highly dependent on the source energy as well as GNP diameter and concentration, though this effect is less pronounced for electron sources. By appropriately weighting the monoenergetic dose ratios obtained, the dose ratio for any arbitrary spectrum can be determined. This allows complex scenarios to be modeled accurately without explicitly simulating each individual GNP.


Oncotarget | 2016

Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour

Anna Kovalchuk; Richelle Mychasiuk; Arif Muhammad; Shakhawat Hossain; Slava Ilnytskyy; Abhijit Ghose; Charles Kirkby; Esmaeel Ghasroddashti; Olga Kovalchuk; Bryan Kolb

Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects. We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model. Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males.


International Journal of Radiation Biology | 2014

Potential implications on TCP for external beam prostate cancer treatment when considering the bystander effect in partial exposure scenarios.

Michael J. Balderson; Charles Kirkby

Abstract Purpose: This work investigated the potential implications on tumour control probability (TCP) for external beam prostate cancer treatment when considering the bystander effect in partial exposure scenarios. Materials and methods: The biological response of a prostate cancer target volume under conditions where a sub-volume of the target volume was not directly irradiated was modelled in terms of surviving fraction (SF) and Poisson-based TCP. A direct comparison was made between the linear-quadratic (LQ) response model, and a response model that incorporates bystander effects as derived from published in vitro data by McMahon et al. in 2012 and 2013. Scenarios of random and systematic misses were considered. Results: Our results suggested the potential for the bystander effect to deviate from LQ predictions when even very small (< 1%) sub-volumes of the target volume were directly irradiated. Under conditions of random misses for each fraction, the bystander model predicts a 3% and 1% improvement in tumour control compared to that predicted by an LQ model when only 90% and 95% of the prostate cells randomly receive the intended dose. Under conditions of systematic miss, if even a small portion of the target volume is not directly exposed, the LQ model predicts a TCP approaching zero, whereas the bystander model suggests TCP will improve starting at exposed volumes of around 85%. Conclusions: The bystander model, when applied to clinically relevant scenarios, demonstrates the potential to deviate from the TCP predictions of the common local LQ model when sub-volumes of a target volume are randomly or systematically missed over a course of fractionated radiation therapy.


International Journal of Radiation Biology | 2013

Monte Carlo-based dose reconstruction in a rat model for scattered ionizing radiation investigations

Charles Kirkby; Esmaeel Ghasroddashti; Anna Kovalchuk; Bryan Kolb; Olga Kovalchuk

Abstract Purpose: In radiation biology, rats are often irradiated, but the precise dose distributions are often lacking, particularly in areas that receive scatter radiation. We used a non-dedicated set of resources to calculate detailed dose distributions, including doses to peripheral organs well outside of the primary field, in common rat exposure settings. Materials and methods: We conducted a detailed dose reconstruction in a rat through an analog to the conventional human treatment planning process. The process consisted of: (i) Characterizing source properties of an X-ray irradiator system, (ii) acquiring a computed tomography (CT) scan of a rat model, and (iii) using a Monte Carlo (MC) dose calculation engine to generate the dose distribution within the rat model. We considered cranial and liver irradiation scenarios where the rest of the body was protected by a lead shield. Organs of interest were the brain, liver and gonads. The study also included paired scenarios where the dose to adjacent, shielded rats was determined as a potential control for analysis of bystander effects. Results: We established the precise doses and dose distributions delivered to the peripheral organs in single and paired rats. Mean doses to non-targeted organs in irradiated rats ranged from 0.03–0.1% of the reference platform dose. Mean doses to the adjacent rat peripheral organs were consistent to within 10% those of the directly irradiated rat. Conclusions: This work provided details of dose distributions in rat models under common irradiation conditions and established an effective scenario for delivering only scattered radiation consistent with that in a directly irradiated rat.


Journal of Applied Clinical Medical Physics | 2012

Clinical consequences of changing the sliding window IMRT dose rate

Esmaeel Ghasroddashti; Wendy Smith; Sarah Quirk; Charles Kirkby

Changing pulse repetition frequency or dose rate used for IMRT treatments can alter the number of monitor units (MUs) and the time required to deliver a plan. This work was done to develop a practical picture of the magnitude of these changes. We used Varians Eclipse Treatment Planning System to calculate the number of MUs and beam‐on times for a total of 40 different treatment plans across an array of common IMRT sites including prostate/pelvis, prostate bed, head and neck, and central nervous system cancers using dose rates of 300, 400 and 600 MU/min. In general, we observed a 4%–7% increase in the number of MUs delivered and a 10–40 second decrease in the beam‐on time for each 100 MU/min of dose rate increase. The increase in the number of MUs resulted in a reduction of the “beam‐on time saved”. The exact magnitude of the changes depended on treatment site and planning target volume. These changes can lead to minor, but not negligible, concerns with respect to radiation protection and treatment planning. Although the number of MUs increased more rapidly for more complex treatment plans, the absolute beam‐on time savings was greater for these plans because of the higher total number of MUs required to deliver them. We estimate that increasing the IMRT dose rate from 300 to 600 MU/min has the potential to add up to two treatment slots per day for each IMRT linear accelerator. These results will be of value to anyone considering general changes to IMRT dose rates within their clinic. PACS number: 87.55.N


Frontiers in Behavioral Neuroscience | 2016

Profound and Sexually Dimorphic Effects of Clinically-Relevant Low Dose Scatter Irradiation on the Brain and Behavior.

Anna Kovalchuk; Richelle Mychasiuk; Arif Muhammad; Shakhawat Hossain; Yaroslav Ilnytskyy; Abhijit Ghose; Charles Kirkby; Esmaeel Ghasroddashti; Bryan Kolb; Olga Kovalchuk

Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders). While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way.


Medical Physics | 2014

Sci—Thur AM: YIS - 04: Gold Nanoparticle Enhanced Arc Radiotherapy: A Monte Carlo Feasibility Study

B Koger; Charles Kirkby

Introduction: The use of gold nanoparticles (GNPs) in radiotherapy has shown promise for therapeutic enhancement. In this study, we explore the feasibility of enhancing radiotherapy with GNPs in an arc-therapy context. We use Monte Carlo simulations to quantify the macroscopic dose-enhancement ratio (DER) and tumour to normal tissue ratio (TNTR) as functions of photon energy over various tumour and body geometries. Methods: GNP-enhanced arc radiotherapy (GEART) was simulated using the PENELOPE Monte Carlo code and penEasy main program. We simulated 360° arc-therapy with monoenergetic photon energies 50 – 1000 keV and several clinical spectra used to treat a spherical tumour containing uniformly distributed GNPs in a cylindrical tissue phantom. Various geometries were used to simulate different tumour sizes and depths. Voxel dose was used to calculate DERs and TNTRs. Inhomogeneity effects were examined through skull dose in brain tumour treatment simulations. Results: Below 100 keV, DERs greater than 2.0 were observed. Compared to 6 MV, tumour dose at low energies was more conformai, with lower normal tissue dose and higher TNTRs. Both the DER and TNTR increased with increasing cylinder radius and decreasing tumour radius. The inclusion of bone showed excellent tumour conformality at low energies, though with an increase in skull dose (40% of tumour dose with 100 keV compared to 25% with 6 MV). Conclusions: Even in the presence of inhomogeneities, our results show promise for the treatment of deep-seated tumours with low-energy GEART, with greater tumour dose conformality and lower normal tissue dose than 6 MV.


Physics in Medicine and Biology | 2016

Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods.

B Koger; Charles Kirkby

As a recent area of development in radiation therapy, gold nanoparticle (GNP) enhanced radiation therapy has shown potential to increase tumour dose while maintaining acceptable levels of healthy tissue toxicity. In this study, the effect of varying photon beam energy in GNP enhanced arc radiation therapy (GEART) is quantified through the introduction of a dose scoring metric, and GEART is compared to a conventional radiotherapy treatment. The PENELOPE Monte Carlo code was used to model several simple phantoms consisting of a spherical tumour containing GNPs (concentration: 15 mg Au g-1 tumour, 0.8 mg Au g-1 normal tissue) in a cylinder of tissue. Several monoenergetic photon beams, with energies ranging from 20 keV to 6 MeV, as well as 100, 200, and 300 kVp spectral beams, were used to irradiate the tumour in a 360° arc treatment. A dose metric was then used to compare tumour and tissue doses from GEART treatments to a similar treatment from a 6 MV spectrum. This was also performed on a simulated brain tumour using patient computed tomography data. GEART treatments showed potential over the 6 MV treatment for many of the simulated geometries, delivering up to 88% higher mean dose to the tumour for a constant tissue dose, with the effect greatest near a source energy of 50 keV. This effect is also seen with the inclusion of bone in a brain treatment, with a 14% increase in mean tumour dose over 6 MV, while still maintaining acceptable levels of dose to the bone and brain.

Collaboration


Dive into the Charles Kirkby's collaboration.

Top Co-Authors

Avatar

B Koger

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Kovalchuk

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar

Bryan Kolb

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Kovalchuk

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge