Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles Kung is active.

Publication


Featured researches published by Charles Kung.


Nature Chemical Biology | 2012

Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

Dimitrios Anastasiou; Yimin Yu; William J. Israelsen; Jian Kang Jiang; Matthew B. Boxer; Bum Soo Hong; Wolfram Tempel; Svetoslav Dimov; Min Shen; Abhishek K. Jha; Hua Yang; Katherine R. Mattaini; Christian M. Metallo; Brian Prescott Fiske; Kevin D. Courtney; Scott Malstrom; Tahsin M. Khan; Charles Kung; Amanda P. Skoumbourdis; Henrike Veith; Noel Southall; Martin J. Walsh; Kyle R. Brimacombe; William Leister; Sophia Y. Lunt; Zachary R. Johnson; Katharine E. Yen; Kaiko Kunii; Shawn M. Davidson; Heather R. Christofk

Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism.


Nature Cell Biology | 2006

The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores

Benjamin A. Pinsky; Charles Kung; Kevan M. Shokat; Sue Biggins

The spindle checkpoint ensures accurate chromosome segregation by delaying cell-cycle progression until all sister kinetochores capture microtubules from opposite poles and come under tension (for reviews, see refs 1, 2). Although the checkpoint is activated by either the lack of kinetochore-microtubule attachments or defects in the tension exerted by microtubule-generated forces, it is not clear whether these signals are linked. We investigated the connection between tension and attachment by studying the conserved budding yeast Ipl1Aurora protein kinase that is required for checkpoint activation in the absence of tension but not attachment. Here, we show that spindle-checkpoint activation in kinetochore mutants that seem to have unattached kinetochores depends on Ipl1 activity. When Ipl1 function was impaired in these kinetochore mutants, the attachments were restored and the checkpoint was turned off. These data indicate that Ipl1 activates the checkpoint in response to tension defects by creating unattached kinetochores. Moreover, although the Dam1 kinetochore complex has been implicated as a key downstream target, we found the existence of unidentified Ipl1 sites on Dam1 or additional important substrates that regulate both microtuble detachment and the checkpoint.


Cell | 2005

The F Box Protein Dsg1/Mdm30 Is a Transcriptional Coactivator that Stimulates Gal4 Turnover and Cotranscriptional mRNA Processing

Masafumi Muratani; Charles Kung; Kevan M. Shokat; William P. Tansey

We report here that the prototypical yeast transcription factor Gal4 undergoes two distinct modes of ubiquitin-mediated proteolysis: one that occurs independent of transcription and restricts Gal4 function, and another that is transcription coupled and essential for productive activation of Gal4 target genes. Destruction of transcriptionally active Gal4 depends on an F box protein called Dsg1/Mdm30. In the absence of Dsg1, Gal4 is stable, nonubiquitylated, and unable to productively stimulate transcription. Analysis of the phenotype of dsg1-null yeast reveals a striking disconnect between GAL gene RNA and protein levels; in the absence of Dsg1, Gal4 target genes are transcribed, but the resulting RNAs are not translated. The translational defects of these RNAs are related to defects in phosphorylation of the RNA polymerase II carboxy-terminal domain, which in turn affects recruitment of RNA processing machinery. We propose that Gal4 ubiquitylation and destruction are required for initiation-competent transcription complexes to transition to fully mature elongating complexes capable of appropriate mRNA processing.


Molecular and Cellular Biology | 2004

Two Cyclin-Dependent Kinases Promote RNA Polymerase II Transcription and Formation of the Scaffold Complex

Ying Liu; Charles Kung; James Fishburn; Aseem Z. Ansari; Kevan M. Shokat; Steven Hahn

ABSTRACT Three cyclin-dependent kinases, CDK7, -8, and -9, are specifically involved in transcription by RNA polymerase II (Pol II) and target the Pol II C-terminal domain (CTD). The role of CDK7 and CDK8 kinase activity in transcription has been unclear, with CDK7 shown to have variable effects on transcription and CDK8 suggested to repress transcription and/or to target other gene-specific factors. Using a chemical genetics approach, the Saccharomyces cerevisiae homologs of these kinases, Kin28 and Srb10, were engineered to respond to a specific inhibitor and the inhibitor was used to test the role of these kinases in transcription in vivo and in vitro. In vitro, these kinases can both promote transcription, with up to 70% of transcription abolished when both kinases are inhibited together. Similarly, in vivo inhibition of both kinases together gives the strongest decrease in transcription, as measured by chromatin immunoprecipitation of Pol II. Kin28 and Srb10 also have overlapping roles in promoting ATP-dependent dissociation of the preinitiation complex (PIC) into the Scaffold complex. Using the engineered kinases and an ATP analog, specific kinase substrates within the PIC were identified. In addition to the previously known substrate, the Pol II CTD, it was found that Kin28 phosphorylates two subunits of Mediator and Srb10 targets two subunits of TFIID for phosphorylation.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis

Elenita I. Kanin; Ryan T. Kipp; Charles Kung; Matthew Slattery; Agnes Viale; Steven Hahn; Kevan M. Shokat; Aseem Z. Ansari

The process of gene transcription requires the recruitment of a hypophosphorylated form of RNA polymerase II (Pol II) to a gene promoter. The TFIIH-associated kinase Cdk7/Kin28 hyperphosphorylates the promoter-bound polymerase; this event is thought to play a crucial role in transcription initiation and promoter clearance. Studies using temperature-sensitive mutants of Kin28 have provided the most compelling evidence for an essential role of its kinase activity in global mRNA synthesis. In contrast, using a small molecule inhibitor that specifically inhibits Kin28 in vivo, we find that the kinase activity is not essential for global transcription. Unlike the temperature-sensitive alleles, the small-molecule inhibitor does not perturb protein–protein interactions nor does it provoke the disassociation of TFIIH from gene promoters. These results lead us to conclude that other functions of TFIIH, rather than the kinase activity, are critical for global gene transcription.


Chemistry & Biology | 2012

Small Molecule Activation of PKM2 in Cancer Cells Induces Serine Auxotrophy

Charles Kung; Jeff Hixon; Sung Choe; Kevin Marks; Stefan Gross; Erin Murphy; Byron DeLaBarre; Giovanni Cianchetta; Shalini Sethumadhavan; Xiling Wang; Shunqi Yan; Yi Gao; Cheng Fang; Wentao Wei; Fan Jiang; Shaohui Wang; Kevin Qian; Jeffrey O. Saunders; Ed Driggers; Hin Koon Woo; Kaiko Kunii; Stuart Murray; Hua Yang; Katharine E. Yen; Wei Liu; Lewis C. Cantley; Matthew G. Vander Heiden; Shinsan M. Su; Shengfang Jin; Francesco G. Salituro

Proliferating tumor cells use aerobic glycolysis to support their high metabolic demands. Paradoxically, increased glycolysis is often accompanied by expression of the lower activity PKM2 isoform, effectively constraining lower glycolysis. Here, we report the discovery of PKM2 activators with a unique allosteric binding mode. Characterization of how these compounds impact cancer cells revealed an unanticipated link between glucose and amino acid metabolism. PKM2 activation resulted in a metabolic rewiring of cancer cells manifested by a profound dependency on the nonessential amino acid serine for continued cell proliferation. Induction of serine auxotrophy by PKM2 activation was accompanied by reduced carbon flow into the serine biosynthetic pathway and increased expression of high affinity serine transporters. These data support the hypothesis that PKM2 expression confers metabolic flexibility to cancer cells that allows adaptation to nutrient stress.


ChemBioChem | 2005

Small-molecule kinase-inhibitor target assessment.

Charles Kung; Kevan M. Shokat

The identification of the cellular targets of small‐molecule protein kinase inhibitors is a significant hurdle to assessing their therapeutic potential for many diseases. Here we review several biochemical and genetics‐based approaches to identifying inhibitor targets. We also describe a chemical‐genomics approach to kinase‐inhibitor target identification and validation that matches transcriptional signatures elicited by a drug of unknown specificity and those elicited by highly specific pharmacological inhibition of engineered candidate kinase targets.


Proceedings of the National Academy of Sciences of the United States of America | 2015

ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis.

Shengfang Jin; Jiang Chen; Lizao Chen; Gavin Histen; Zhizhong Lin; Stefan Gross; Jeffrey Hixon; Yue Chen; Charles Kung; Yiwei Chen; Yufei Fu; Yuxuan Lu; Hui Lin; Xiujun Cai; Hua Yang; Rob A. Cairns; Marion Dorsch; Shinsan M. Su; Scott A. Biller; Tak W. Mak; Yong Cang

Significance About 40% of East Asians and over 500 million people worldwide carry a specific polymorphism, ALDH2*2, and exhibit “Asian flush” after alcohol drinking. We generated a mouse strain with this engineered polymorphism and demonstrated its resemblance to human carriers in terms of defective alcohol metabolism. With this model, we show that murine ALDH2*2 increases ALDH2 protein turnover and promotes chemical-induced liver tumor development. Importantly, ALDH2 is unstable in ALDH2*2 human liver samples and is significantly down-regulated in human liver tumors. Data from our mouse and clinical studies suggest that ALDH2 is a liver tumor suppressor and the ALDH2*2 polymorphism is a risk factor for liver cancer. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the liver removes toxic aldehydes including acetaldehyde, an intermediate of ethanol metabolism. Nearly 40% of East Asians inherit an inactive ALDH2*2 variant, which has a lysine-for-glutamate substitution at position 487 (E487K), and show a characteristic alcohol flush reaction after drinking and a higher risk for gastrointestinal cancers. Here we report the characterization of knockin mice in which the ALDH2(E487K) mutation is inserted into the endogenous murine Aldh2 locus. These mutants recapitulate essentially all human phenotypes including impaired clearance of acetaldehyde, increased sensitivity to acute or chronic alcohol-induced toxicity, and reduced ALDH2 expression due to a dominant-negative effect of the mutation. When treated with a chemical carcinogen, these mutants exhibit increased DNA damage response in hepatocytes, pronounced liver injury, and accelerated development of hepatocellular carcinoma (HCC). Importantly, ALDH2 protein levels are also significantly lower in patient HCC than in peritumor or normal liver tissues. Our results reveal that ALDH2 functions as a tumor suppressor by maintaining genomic stability in the liver, and the common human ALDH2 variant would present a significant risk factor for hepatocarcinogenesis. Our study suggests that the ALDH2*2 allele–alcohol interaction may be an even greater human public health hazard than previously appreciated.


Stem cell reports | 2015

Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells

Zita Garate; Oscar Quintana-Bustamante; Ana M. Crane; Emmanuel Olivier; Laurent Poirot; Roman Galetto; Penelope Kosinski; Collin Hill; Charles Kung; Xabi Agirre; Israel Orman; Laura Cerrato; Omaira Alberquilla; Fatima Rodriguez-Fornes; Noemi Fusaki; Félix García-Sánchez; Tabita M. Maia; Ribeiro Ml; Julián Sevilla; Felipe Prosper; Shengfang Jin; Joanne C. Mountford; Guillermo Guenechea; Agnès Gouble; Juan A. Bueren; Brian R. Davis; José Segovia

Summary Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.


Molecular Therapy | 2016

Safe and Efficient Gene Therapy for Pyruvate Kinase Deficiency

Maria Garcia-Gomez; Andrea Calabria; María García-Bravo; Fabrizio Benedicenti; Penelope Kosinski; Sergio López-Manzaneda; Collin Hill; María del Mar Mañú-Pereira; Miguel A Martín; Israel Orman; Joan-Lluis Vives-Corrons; Charles Kung; Axel Schambach; Shengfang Jin; Juan A. Bueren; Eugenio Montini; Susana Navarro; José Segovia

Pyruvate kinase deficiency (PKD) is a monogenic metabolic disease caused by mutations in the PKLR gene that leads to hemolytic anemia of variable symptomatology and that can be fatal during the neonatal period. PKD recessive inheritance trait and its curative treatment by allogeneic bone marrow transplantation provide an ideal scenario for developing gene therapy approaches. Here, we provide a preclinical gene therapy for PKD based on a lentiviral vector harboring the hPGK eukaryotic promoter that drives the expression of the PKLR cDNA. This therapeutic vector was used to transduce mouse PKD hematopoietic stem cells (HSCs) that were subsequently transplanted into myeloablated PKD mice. Ectopic RPK expression normalized the erythroid compartment correcting the hematological phenotype and reverting organ pathology. Metabolomic studies demonstrated functional correction of the glycolytic pathway in RBCs derived from genetically corrected PKD HSCs, with no metabolic disturbances in leukocytes. The analysis of the lentiviral insertion sites in the genome of transplanted hematopoietic cells demonstrated no evidence of genotoxicity in any of the transplanted animals. Overall, our results underscore the therapeutic potential of the hPGK-coRPK lentiviral vector and provide high expectations toward the gene therapy of PKD and other erythroid metabolic genetic disorders.

Collaboration


Dive into the Charles Kung's collaboration.

Top Co-Authors

Avatar

Hua Yang

Agios Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrike Veith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kyle R. Brimacombe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Martin J. Walsh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthew B. Boxer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Min Shen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William J. Israelsen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yimin Yu

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge