Charles L. Bisgaier
Parke-Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles L. Bisgaier.
Journal of Clinical Investigation | 1998
Michael Aviram; Mira Rosenblat; Charles L. Bisgaier; Roger S. Newton; Sergio L. Primo-Parmo; B N La Du
HDL levels are inversely related to the risk of developing atherosclerosis. In serum, paraoxonase (PON) is associated with HDL, and was shown to inhibit LDL oxidation. Whether PON also protects HDL from oxidation is unknown, and was determined in the present study. In humans, we found serum HDL PON activity and HDL susceptibility to oxidation to be inversely correlated (r2 = 0.77, n = 15). Supplementing human HDL with purified PON inhibited copper-induced HDL oxidation in a concentration-dependent manner. Adding PON to HDL prolonged the oxidation lag phase and reduced HDL peroxide and aldehyde formation by up to 95%. This inhibitory effect was most pronounced when PON was added before oxidation initiation. When purified PON was added to whole serum, essentially all of it became HDL-associated. The PON-enriched HDL was more resistant to copper ion-induced oxidation than was control HDL. Compared with control HDL, HDL from PON-treated serum showed a 66% prolongation in the lag phase of its oxidation, and up to a 40% reduction in peroxide and aldehyde content. In contrast, in the presence of various PON inhibitors, HDL oxidation induced by either copper ions or by a free radical generating system was markedly enhanced. As PON inhibited HDL oxidation, two major functions of HDL were assessed: macrophage cholesterol efflux, and LDL protection from oxidation. Compared with oxidized untreated HDL, oxidized PON-treated HDL caused a 45% increase in cellular cholesterol efflux from J-774 A.1 macrophages. Both HDL-associated PON and purified PON were potent inhibitors of LDL oxidation. Searching for a possible mechanism for PON-induced inhibition of HDL oxidation revealed PON (2 paraoxonase U/ml)-mediated hydrolysis of lipid peroxides (by 19%) and of cholesteryl linoleate hydroperoxides (by 90%) in oxidized HDL. HDL-associated PON, as well as purified PON, were also able to substantially hydrolyze (up to 25%) hydrogen peroxide (H2O2), a major reactive oxygen species produced under oxidative stress during atherogenesis. Finally, we analyzed serum PON activity in the atherosclerotic apolipoprotein E-deficient mice during aging and development of atherosclerotic lesions. With age, serum lipid peroxidation and lesion size increased, whereas serum PON activity decreased. We thus conclude that HDL-associated PON possesses peroxidase-like activity that can contribute to the protective effect of PON against lipoprotein oxidation. The presence of PON in HDL may thus be a major contributor to the antiatherogenicity of this lipoprotein.
Free Radical Biology and Medicine | 1999
Michael Aviram; Mira Rosenblat; Scott S. Billecke; John Erogul; Robert C. Sorenson; Charles L. Bisgaier; Roger S. Newton; Bert N. La Du
Human serum paraoxonase (PON1) can protect low density lipoprotein (LDL) from oxidation induced by either copper ion or by the free radical generator azo bis amidinopropane hydrochloride (AAPH). During LDL oxidation in both of these systems, a time-dependent inactivation of PON arylesterase activity was observed. Oxidized LDL (Ox-LDL) produced by lipoprotein incubation with either copper ion or with AAPH, indeed inactivated PON arylesterase activity by up to 47% or 58%, respectively. Three possible mechanisms for PON inactivation during LDL oxidation were considered and investigated: copper ion binding to PON, free radical attack on PON, and/or the effect of lipoprotein-associated peroxides on the enzyme. As both residual copper ion and AAPH are present in the Ox-LDL preparations and could independently inactivate the enzyme, the effect of minimally oxidized (Ox-LDL produced by LDL storage in the air) on PON activity was also examined. Oxidized LDL, as well as oxidized palmitoyl arachidonoyl phosphatidylcholine (PAPC), lysophosphatidylcholine (LPC, which is produced during LDL oxidation by phospholipase A2-like activity), and oxidized cholesteryl arachidonate (Ox-CA), were all potent inactivators of PON arylesterase activity (PON activity was inhibited by 35%-61%). PON treatment with Ox-LDL (but not with native LDL), or with oxidized lipids, inhibited its arylesterase activity and also reduced the ability of the enzyme to protect LDL against oxidation. PON Arylesterase activity however was not inhibited when PON was pretreated with the sulfhydryl blocking agent, p-hydroxymercurybenzoate (PHMB). Similarly, on using recombinant PON in which the enzymes only free sulfhydryl group at the position of cysteine-284 was mutated, no inactivation of the enzyme arylesterase activity by Ox-LDL could be shown. These results suggest that Ox-LDL inactivation of PON involves the interaction of oxidized lipids in Ox-LDL with the PONs free sulfhydryl group. Antioxidants such as the flavonoids glabridin or quercetin, when present during LDL oxidation in the presence of PON, reduced the amount of lipoprotein-associated lipid peroxides and preserved PON activities, including its ability to hydrolyze Ox-LDL cholesteryl linoleate hydroperoxides. We conclude that PONs ability to protect LDL against oxidation is accompanied by inactivation of the enzyme. PON inactivation results from an interaction between the enzyme free sulfhydryl group and oxidized lipids such as oxidized phospholipids, oxidized cholesteryl ester or lysophosphatidylcholine, which are formed during LDL oxidation. The action of antioxidants and PON on LDL during its oxidation can be of special benefit against atherosclerosis since these agents reduce the accumulation of Ox-LDL by a dual effect: i.e. prevention of its formation, and removal of Ox-LDL associated oxidized lipids which are generated during LDL oxidation.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1998
Michael Aviram; Scott S. Billecke; Robert C. Sorenson; Charles L. Bisgaier; Roger S. Newton; Mira Rosenblat; John Erogul; Cary Hsu; Cristina Dunlop; Bert N. La Du
Human serum paraoxonase (PON 1) exists in 2 major polymorphic forms (Q and R), which differ in the amino acid at position 191 (glutamine and arginine, respectively). These PON allozymes hydrolyze organophosphates and aromatic esters, and both also protect LDL from copper ion-induced oxidation. We have compared purified serum PONs of both forms and evaluated their effects on LDL oxidation, in respect to their arylesterase/paraoxonase activities. Copper ion-induced LDL oxidation, measured by the production of peroxides and aldehydes after 4 hours of incubation, were reduced up to 61% and 58%, respectively, by PON Q, but only up to 46% and 38%, respectively, by an equivalent concentration of PON R. These phenomena were PON-concentration dependent. Recombinant PON Q and PON R demonstrated similar patterns to that shown for the purified serum allozymes. PON Q and PON R differences in protection of LDL against oxidation were further evaluated in the presence of glutathione peroxidase (GPx). GPx (0.1 U/mL) alone reduced copper ion-induced LDL oxidation by 20% after 4 hours of incubation. The addition of PON R to the above system resulted in an additive inhibitory effect on LDL oxidation, whereas PON Q had no such additive effect. The 2 PON allozymes also differed by their ability to inhibit initiation, as well as propagation, of LDL oxidation. PON Q was more efficient in blocking LDL oxidation if added when oxidation was initiated, whereas PON R was more potent when added 1 hour after the initiation of LDL oxidation. These data suggest that the 2 allozymes act on different substrates. Both PON allozymes were also able to reduce the oxidation of phospholipids and cholesteryl ester. PON Q arylesterase activity was reduced after 4 hours of LDL oxidation by only 28%, whereas the arylesterase activity of PON R was reduced by up to 55%. Inactivation of the calcium-dependent PON arylesterase activity by using the metal chelator EDTA, or by calcium ion removal on a Chelex column, did not alter PONs ability to inhibit LDL oxidation. However, blockage of the PON free sulfhydryl group at position 283 with p-hydroxymercuribenzoate inhibited both its arylesterase activity and its protection of LDL from oxidation. Recombinant PON mutants in which the PON free sulfhydryl group was replaced by either alanine or serine were no longer able to protect against LDL oxidation, even though they retained paraoxonase and arylesterase activities. Overall, these studies demonstrate that PONs arylesterase/paraoxonase activities and the protection against LDL oxidation do not involve the active site on the enzyme in exactly the same way, and PONs ability to protect LDL from oxidation requires the cysteine residue at position 283.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1999
Robert C. Sorenson; Charles L. Bisgaier; Michael Aviram; Cary Hsu; Scott S. Billecke; Bert N. La Du
In serum, human paraoxonase/arylesterase (PON1) is found exclusively associated with high density lipoprotein (HDL) and contributes to its antiatherogenic properties by inhibiting low density lipoprotein (LDL) oxidation. Difficulties in purifying PON1 from apolipoprotein A-I (apoA-I) suggested that PON1s association with HDL may occur through a direct binding between these 2 proteins. An unusual property of PON1 is that the mature protein retains its hydrophobic N-terminal signal sequence. By expressing in vitro a mutant PON1 with a cleavable N-terminus, we demonstrate that PON1 associates with lipoproteins through its N-terminus by binding phospholipids directly rather than binding apoA-I. Nonetheless, apoA-I stabilized arylesterase activity more than did phospholipid alone, apoA-II, or apoE. Consequently, we studied the role of apoA-I in PON1 expression and HDL association in mice genetically deficient in apoA-I. Though present in HDL fractions at decreased levels, PON1 arylesterase activity was less stable than in control mice. Furthermore, PON1 could be competitively removed from HDL by phospholipids, suggesting that PON1s retained N-terminal peptide allows transfer of the enzyme between phospholipid surfaces. Thus, our data suggest that PON1 is stabilized by apoA-I, and its binding to HDL and physiological distribution are dependent on the direct binding of the retained hydrophobic N-terminus to phospholipids optimally presented in association with apoA-I.
Journal of Clinical Investigation | 1995
Peter Weinstock; Charles L. Bisgaier; K. Aalto-Setälä; Herbert Radner; Rajasekhar Ramakrishnan; Sanja Levak-Frank; Arnold D. Essenburg; Rudolf Zechner; Jan L. Breslow
Lipoprotein lipase (LPL)-deficient mice have been created by gene targeting in embryonic stem cells. At birth, homozygous knockout pups have threefold higher triglycerides and sevenfold higher VLDL cholesterol levels than controls. When permitted to suckle, LPL-deficient mice become pale, then cyanotic, and finally die at approximately 18 h of age. Before death, triglyceride levels are severely elevated (15,087 +/- 3,805 vs 188 +/- 71 mg/dl in controls). Capillaries in tissues of homozygous knockout mice are engorged with chylomicrons. This is especially significant in the lung where marginated chylomicrons prevent red cell contact with the endothelium, a phenomenon which is presumably the cause of cyanosis and death in these mice. Homozygous knockout mice also have diminished adipose tissue stores as well as decreased intracellular fat droplets. By crossbreeding with transgenic mice expressing human LPL driven by a muscle-specific promoter, mouse lines were generated that express LPL exclusively in muscle but not in any other tissue. This tissue-specific LPL expression rescued the LPL knockout mice and normalized their lipoprotein pattern. This supports the contention that hypertriglyceridemia caused the death of these mice and that LPL expression in a single tissue was sufficient for rescue. Heterozygous LPL knockout mice survive to adulthood and have mild hypertriglyceridemia, with 1.5-2-fold elevated triglyceride levels compared with controls in both the fed and fasted states on chow, Western-type, or 10% sucrose diets. In vivo turnover studies revealed that heterozygous knockout mice had impaired VLDL clearance (fractional catabolic rate) but no increase in transport rate. In summary, total LPL deficiency in the mouse prevents triglyceride removal from plasma, causing death in the neonatal period, and expression of LPL in a single tissue alleviates this problem. Furthermore, half-normal levels of LPL cause a decrease in VLDL fractional catabolic rate and mild hypertriglyceridemia, implying that partial LPL deficiency has physiological consequences.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1999
Andrew S. Plump; Lori Masucci-Magoulas; Can Bruce; Charles L. Bisgaier; Jan L. Breslow; Alan R. Tall
The plasma cholesteryl ester transfer protein (CETP) plays a major role in the catabolism of HDL cholesteryl ester (CE). CETP transgenic mice have decreased HDL cholesterol levels and have been reported to have either increased or decreased early atherosclerotic lesions. To evaluate the impact of CETP expression on more advanced forms of atherosclerosis, we have cross-bred the human CETP transgene into the apoE knock-out (apoE0) background with and without concomitant expression of the human apo A-I transgene. In this model the CETP transgene is induced to produce plasma CETP levels 5 to 10 times normal human levels. CETP expression resulted in moderately reduced HDL cholesterol (34%) in apoE0 mice and markedly reduced HDL cholesterol (76%) in apoE0/apoA1 transgenic mice. After injection of radiolabeled HDL CE, the CETP transgene significantly delayed the clearance of CE radioactivity from plasma in apoE0 mice, but accelerated the clearance in apoE0/apoA1 transgenic mice. ApoE0/CETP mice displayed an increase in mean atherosclerotic lesion area on the chow diet (approximately 2-fold after 2 to 4 months, and 1.4- to 1.6-fold after 7 months) compared with apoE0 mice (P<0.02). At 7 months apoA1 transgene expression resulted in a 3-fold reduction in mean lesion area in apoE0 mice (P<0.001). In the apoE0/apoA1 background, CETP produced an insignificant 1.3- to 1.7-fold increase in lesion area. In further studies the CETP transgene was bred onto the LDL receptor knock-out background (LDLR0). After 3 months on the Western diet, the mean lesion area was increased 1.8-fold (P<0.01) in LDLR0/CETP mice, compared with LDLR0 mice. These studies indicate that CETP expression leads to a moderate increase in atherosclerosis in apoE0 and LDLR0 mice, and suggest a proatherogenic effect of CETP activity in metabolic settings in which clearance of remnants or LDL is severely impaired. However, apoA1 overexpression has more dramatic protective effects on atherosclerosis in apoE0 mice, which are not significantly reversed by concomitant expression of CETP.
Circulation Research | 2002
Giulia Chiesa; Elena Monteggia; Marta Marchesi; Paolo Lorenzon; Massimo Laucello; Vito Lorusso; Carlo Di Mario; Evangelia Karvouni; Roger S. Newton; Charles L. Bisgaier; Guido Franceschini; Cesare R. Sirtori
Apolipoprotein A-IMilano (AIM), a natural variant of human apolipoprotein A-I, confers to carriers a significant protection against vascular disease. In previous studies, administration of recombinant AIM-phospholipid (AIM-PL) complexes to hypercholesterolemic rabbits markedly inhibited neointimal formation after arterial injury; moreover, repeated injections of AIM-PL in apoE-deficient mice significantly reduced atherosclerosis progression. The objective of the present study was to determine if a single localized infusion of AIM-PL complexes administered directly to atheromatous lesions could promote plaque regression. Lipid-rich, atheromatous plaques were generated at both common carotid arteries of 25 rabbits by applying a perivascular electric injury, followed by 1.5% cholesterol diet for 90 days. Rabbits were infused with either saline, phospholipid vesicles, or 3 different AIM-PL doses (250, 500, or 1000 mg of protein) delivered through an intravascular ultrasound (IVUS) catheter positioned at the origin of the right carotid. The lesions at the left carotid artery were therefore exposed to the agents systemically. Infusion of AIM-PL at the 2 highest doses caused reduction of right carotid artery plaque area by the end a 90-minute infusion as assessed by IVUS analysis. Plaque area regression was confirmed by histology in carotid arteries receiving direct (500 and 1000 mg doses) and systemic (500 mg dose) delivery, 72 hours after the start of the treatment. Plaque lipid content was associated with significant and similar decreases in Oil Red O staining in both arteries. These results suggest AIM-PL complexes enhanced lipid removal from arteries is the mechanism responsible for the observed plaque changes.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2003
Mira Rosenblat; Dragomir I. Draganov; Catherine E. Watson; Charles L. Bisgaier; Bert N. La Du; Michael Aviram
Objective—To determine whether paraoxonases (PONs) are expressed in macrophages and to analyze the oxidative stress effect on their expression and activities. Methods and Results—We demonstrated the presence (mRNA, protein, activity) of PON2 and PON3 but not PON1 in murine macrophages, whereas in human macrophages, only PON2 was expressed. Under oxidative stress as present in mouse peritoneal macrophages (MPMs) from apoE-deficient (E0) mice as well as in C57BL6 mice, MPMs that were incubated with buthionine sulfoximine, with angiotensin II, with 7-ketocholesterol, or with oxidized phosphatidylcholine, PON2 mRNA levels and lactonase activity toward dihydrocoumarin significantly increased (by 50% to 130%). In contrast, PON3 lactonase activity toward lovastatin was markedly reduced (by 29% to 57%) compared with control cells. The supplementation of E0 mice with dietary antioxidants (vitamin E, pomegranate juice) significantly increased macrophage PON3 activity (by 23% to 40%), suggesting that oxidative stress was the cause for the reduced macrophage PON3 activity. Incubation of purified PON2 or PON3 with E0 mice MPMs resulted in reduced cellular lipid peroxides content by 14% to 19% and inhibition of cell-mediated LDL oxidation by 32% to 39%. Conclusions—Increased macrophage PON2 expression under oxidative stress could represent a selective cellular response to reduce oxidative burden, which may lead to attenuation of macrophage foam cell formation.
Molecular and Cellular Biology | 1999
Hangjun Duan; Yuli Wang; Micheal Aviram; Manju Swaroop; Joseph A. Loo; Junhui Bian; Ye Tian; Tom Mueller; Charles L. Bisgaier; Yi Sun
ABSTRACT SAG (sensitive to apoptosis gene) was cloned as an inducible gene by 1,10-phenanthroline (OP), a redox-sensitive compound and an apoptosis inducer. SAG encodes a novel zinc RING finger protein that consists of 113 amino acids with a calculated molecular mass of 12.6 kDa. SAG is highly conserved during evolution, with identities of 70% between human and Caenorhabditis elegans sequences and 55% between human and yeast sequences. In human tissues, SAG is ubiquitously expressed at high levels in skeletal muscles, heart, and testis. SAG is localized in both the cytoplasm and the nucleus of cells, and its gene was mapped to chromosome 3q22-24. Bacterially expressed and purified human SAG binds to zinc and copper metal ions and prevents lipid peroxidation induced by copper or a free radical generator. When overexpressed in several human cell lines, SAG protects cells from apoptosis induced by redox agents (the metal chelator OP and zinc or copper metal ions). Mechanistically, SAG appears to inhibit and/or delay metal ion-induced cytochrome c release and caspase activation. Thus, SAG is a cellular protective molecule that appears to act as an antioxidant to inhibit apoptosis induced by metal ions and reactive oxygen species.
Molecular and Cellular Biochemistry | 2006
Rai Ajit K. Srivastava; Ravi Jahagirdar; Salman Azhar; Somesh Sharma; Charles L. Bisgaier
Fenofibrate, a selective 1PPAR-α activator, is prescribed to treat human dyslipidemia. The aim of this study was to delineate the mechanism of fenofibrate-mediated reductions in adiposity, improvements in insulin sensitivity, and lowering of triglycerides (TG) and free fatty acids (FFA) and to investigate if these favorable changes are related to the inhibition of lipid deposition in the aorta. To test this hypothesis we used male LDLr deficient mice that exhibit the clinical features of metabolic syndrome X when fed a high fat high cholesterol (HF) diet. LDLr deficient mice fed HF diet and simultaneously treated with fenofibrate (100 mg/kg body weight) prevented development of obesity, lowered serum triglycerides and cholesterol, improved insulin sensitivity, and prevented accumulation of lipids in the aorta. Lowering of circulating lipids occurred via down-regulation of lipogenic genes, including fatty acid synthase, acetyl CoA carboxylase and diacyl glycerol acyl transferase-2, concomitant with decreased liver TG and cholesterol, and TG output rate. Fenofibrate also suppressed liver apoCIII mRNA levels and markedly increased lipoprotein lipase mRNA levels, known to enhance serum TG catabolism. In addition, fenofibrate profoundly reduced epididymal fat and mesenteric fat mass to the levels seen in lean mice. The reductions in body weight were associated with elevation of hepatic uncoupling protein 2 (UCP2) mRNA, a concomitant increase in the ketone body formation, and improved insulin sensitivity associated with tumor necrosis factor-α reductions and phosphoenol pyruvate carboxykinase down-regulation. These results demonstrate that fenofibrate improves lipid abnormalities partly via inhibition of TG production and partly via clearance of TG-rich apoB particles by elevating LPL and reduced apoCIII. The prevention of obesity development occurred via energy expenditure. Fenofibrate-mediated hypolipidemic effects together with improved insulin sensitivity and loss of adiposity led to the reductions in the aortic lipid deposition by inhibiting early stages of atherosclerosis possibly via vascular cell adhesion molecule-1 (VCAM-1) modulation. These results suggest that potent PPAR-α activators may be useful in the treatment of syndrome X. (Mol Cell Biochem xxx: 1–16, 2005)