Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles M. Allan is active.

Publication


Featured researches published by Charles M. Allan.


Biology of Reproduction | 2008

Androgen Actions and the Ovary

Kirsty A. Walters; Charles M. Allan; David J. Handelsman

Abstract Although androgens and the androgen receptor (AR) have defining roles in male reproductive development and function, previously no role in female reproductive physiology beyond testosterone (T) as the precursor in estradiol (E2) biosynthesis was firmly established. Understanding the role and specific mechanisms of androgen action via the AR in the ovary has been limited by confusion on how to interpret results from pharmacological studies, because many androgens can be metabolized in vivo and in vitro to steroids that can also exert actions via the estrogen receptor (ESR). Recent genetic studies using mouse models with specific disruption of the Ar gene have highlighted the role that AR-mediated actions play in maintaining female fertility through key roles in the regulation of follicle health, development, and ovulation. Furthermore, these genetic studies have revealed that AR-mediated effects influence age-related female fertility, possibly via mechanisms acting predominantly at the hypothalamic-pituitary axis in a dose-dependent manner. This review focuses on combining the findings from pharmacological studies and novel genetic mouse models to unravel the roles of ovarian androgen actions in relation to female fertility and ovarian aging, as well as creating new insights into the role of androgens in androgen-associated reproductive disorders such as polycystic ovarian syndrome.


Biology of Reproduction | 2012

Rodent Models for Human Polycystic Ovary Syndrome

Kirsty A. Walters; Charles M. Allan; David J. Handelsman

ABSTRACT Polycystic ovary syndrome (PCOS) is the most frequent female endocrine disorder, affecting 5%–10% of women, causing infertility due to dysfunctional follicular maturation and ovulation, distinctive multicystic ovaries and hyperandrogenism, together with metabolic abnormalities including obesity, hyperinsulinism, an increased risk of type 2 diabetes, and cardiovascular disease. The etiology of PCOS is unclear, and decisive clinical studies are limited by ethical and logistic constraints. Consequently treatment is palliative rather than curative and focuses on symptomatic approaches. Hence, a suitable animal model could provide a valuable means with which to study the pathogenesis of the characteristic reproductive and metabolic abnormalities and thereby identify novel and more effective treatments. So far there is no consensus on the best experimental animal model, which should ideally reproduce the key features associated with human PCOS. The prenatally androgenized rhesus monkey displays many characteristics of the human condition, including hyperandrogenism, anovulation, polycystic ovaries, increased adiposity, and insulin insensitivity. However, the high cost of nonhuman primate studies limits the practical utility of these large-animal models. Rodent models, on the other hand, are inexpensive, provide well-characterized and stable genetic backgrounds readily accessible for targeted genetic manipulation, and shorter reproductive life spans and generation times. Recent rodent models display both reproductive and metabolic disturbances associated with human PCOS. This review aimed to evaluate the rodent models reported to identify the advantages and disadvantages of the distinct rodent models used to investigate this complex endocrine disorder.


Endocrinology | 1999

Spermatogenesis without Gonadotropins: Maintenance Has a Lower Testosterone Threshold than Initiation

David J. Handelsman; Jennifer A. Spaliviero; Julie M. Simpson; Charles M. Allan; Jaskirat Singh

We showed previously that testosterone (T) alone could induce spermatogenesis and produce normally fertile spermatozoa in the absence of circulating gonadotropins. These studies used the hpg mouse, which is characterized by a congenital gonadotrophin deficiency due to a major deletion in the GnRH gene. Administering T by a subdermal implant of a SILASTIC brand tube impregnated with crystalline T showed that the androgenic requirement for full induction of spermatogenesis was a 1-cm length implant. Using this unique model of spermatogenesis without gonadotropins, we have now investigated the quantitative requirement for androgens to maintain spermatogenesis by testing the hypothesis that the androgenic threshold required for induction and maintenance of spermatogenesis are the same. Spermatogenesis was induced in homozygous hpg mice by T administration for 6 weeks. The first experiment determined the time-course of the regression of spermatogenesis after removal of the T-impregnated SILASTIC brand implant....


Endocrinology | 2009

Subfertile Female Androgen Receptor Knockout Mice Exhibit Defects in Neuroendocrine Signaling, Intraovarian Function, and Uterine Development But Not Uterine Function

Kirsty A. Walters; Kirsten J. McTavish; Martin Seneviratne; Mark Jimenez; Aisling C. McMahon; Charles M. Allan; Lois A. Salamonsen; David J. Handelsman

Female androgen receptor (AR) knockout mice (AR(-/-)) generated by an in-frame Ar exon 3 deletion are subfertile, but the mechanism is not clearly defined. To distinguish between extra- and intraovarian defects, reciprocal ovarian transplants were undertaken. Ovariectomized AR(-/-) hosts with wild-type (AR(+/+)) ovary transplants displayed abnormal estrus cycles, with longer cycles (50%, P < 0.05), and 66% were infertile (P < 0.05), whereas AR(+/+) hosts with either AR(-/-) or surgical control AR(+/+) ovary transplants displayed normal estrus cycles and fertility. These data imply a neuroendocrine defect, which is further supported by increased FSH (P <0.05) and estradiol (P <0.05), and greater LH suppressibility by estradiol in AR(-/-) females at estrus (P <0.05). Additional intraovarian defects were observed by the finding that both experimental transplant groups exhibited significantly reduced pups per litter (P < 0.05) and corpora lutea numbers (P < 0.05) compared with surgical controls. All groups exhibited normal uterine and lactation functions. AR(-/-) uteri were morphologically different from AR(+/+) with an increase in horn length (P < 0.01) but a reduction in uterine diameter (P < 0.05), total uterine area (P < 0.05), endometrial area (P < 0.05), and myometrial area (P < 0.01) at diestrus, indicating a role for AR in uterine growth and development. Both experimental transplant groups displayed a significant reduction in uterine diameter (P < 0.01) compared with transplanted wild-type controls, indicating a role for both AR-mediated intraovarian and intrauterine influences on uterine physiology. In conclusion, these data provide direct evidence that extraovarian neuroendocrine, but not uterine effects, as well as local intraovarian AR-mediated actions are important in maintaining female fertility, and a disruption of AR signaling leads to altered uterine development.


Endocrinology | 2014

Characterization of Reproductive, Metabolic, and Endocrine Features of Polycystic Ovary Syndrome in Female Hyperandrogenic Mouse Models

Aimee S.L. Caldwell; Linda J. Middleton; Mark Jimenez; Reena Desai; Aisling C. McMahon; Charles M. Allan; David J. Handelsman; Kirsty A. Walters

Polycystic ovary syndrome (PCOS) affects 5-10% of women of reproductive age, causing a range of reproductive, metabolic and endocrine defects including anovulation, infertility, hyperandrogenism, obesity, hyperinsulinism, and an increased risk of type 2 diabetes and cardiovascular disease. Hyperandrogenism is the most consistent feature of PCOS, but its etiology remains unknown, and ethical and logistic constraints limit definitive experimentation in humans to determine mechanisms involved. In this study, we provide the first comprehensive characterization of reproductive, endocrine, and metabolic PCOS traits in 4 distinct murine models of hyperandrogenism, comprising prenatal dihydrotestosterone (DHT, potent nonaromatizable androgen) treatment during days 16-18 of gestation, or long-term treatment (90 days from 21 days of age) with DHT, dehydroepiandrosterone (DHEA), or letrozole (aromatase inhibitor). Prenatal DHT-treated mature mice exhibited irregular estrous cycles, oligo-ovulation, reduced preantral follicle health, hepatic steatosis, and adipocyte hypertrophy, but lacked overall changes in body-fat composition. Long-term DHT treatment induced polycystic ovaries displaying unhealthy antral follicles (degenerate oocyte and/or > 10% pyknotic granulosa cells), as well as anovulation and acyclicity in mature (16-week-old) females. Long-term DHT also increased body and fat pad weights and induced adipocyte hypertrophy and hypercholesterolemia. Long-term letrozole-treated mice exhibited absent or irregular cycles, oligo-ovulation, polycystic ovaries containing hemorrhagic cysts atypical of PCOS, and displayed no metabolic features of PCOS. Long-term dehydroepiandrosterone treatment produced no PCOS features in mature mice. Our findings reveal that long-term DHT treatment replicated a breadth of ovarian, endocrine, and metabolic features of human PCOS and provides the best mouse model for experimental studies of PCOS pathogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Follicle-stimulating hormone increases bone mass in female mice

Charles M. Allan; Robert Kalak; Colin R. Dunstan; Kirsten J. McTavish; Hong Zhou; David J. Handelsman; Markus J. Seibel

Elevated follicle-stimulating hormone (FSH) activity is proposed to directly cause bone loss independent of estradiol deficiency in aging women. Using transgenic female mice expressing human FSH (TgFSH), we now reveal that TgFSH dose-dependently increased bone mass, markedly elevating tibial and vertebral trabecular bone volume. Furthermore, TgFSH stimulated a striking accrual of bone mass in hypogonadal mice lacking endogenous FSH and luteinizing hormone (LH) function, showing that FSH-induced bone mass occurred independently of background LH or estradiol levels. Higher TgFSH levels increased osteoblast surfaces in trabecular bone and stimulated de novo bone formation, filling marrow spaces with woven rather than lamellar bone, reflective of a strong anabolic stimulus. Trabecular bone volume correlated positively with ovarian-derived serum inhibin A or testosterone levels in TgFSH mice, and ovariectomy abolished TgFSH-induced bone formation, proving that FSH effects on bone require an ovary-dependent pathway. No detectable FSH receptor mRNA in mouse bone or cultured osteoblasts or osteoclasts indicated that FSH did not directly stimulate bone. Therefore, contrary to proposed FSH-induced bone loss, our findings demonstrate that FSH has dose-dependent anabolic effects on bone via an ovary-dependent mechanism, which is independent of LH activity, and does not involve direct FSH actions on bone cells.


Biology of Reproduction | 2012

Targeted Loss of Androgen Receptor Signaling in Murine Granulosa Cells of Preantral and Antral Follicles Causes Female Subfertility

Kirsty A. Walters; Linda J. Middleton; Shai R. Joseph; Rasmani Hazra; Mark Jimenez; Ulla Simanainen; Charles M. Allan; David J. Handelsman

ABSTRACT Ovarian granulosa cells display strong androgen receptor (AR) expression, suggesting a functional role for direct AR-mediated actions within developing mammalian follicles. By crossing AR-floxed and anti-Müllerian hormone (AMH)-Cre recombinase mice, we generated granulosa cell-specific androgen receptor knockout mice (GCARKO). Cre expression, assessed by lacZ activity, localized to 70%–100% of granulosa cells in most preantral to antral follicles, allowing for selected evaluation of granulosa cell AR-dependent actions during follicle development. Relative to wild-type (WT) females, GCARKO females were subfertile, producing a 24% reduction in the number of litters (P < 0.05) over 6 mo and an age-dependent decrease in total number of pups born, evident from 6 mo of age (P < 0.05). Follicle dynamics were altered in GCARKO ovaries at 3 mo of age, with a significant reduction in large preantral and small antral follicle numbers compared to WT ovaries (P < 0.05). Global premature follicle depletion was not observed, but increased follicular atresia was evident in GCARKO ovaries at 6 mo of age, with an 81% increase in unhealthy follicles and zona pellucida remnants (P < 0.01). Cumulus cell expansion was decreased (P < 0.01) and oocyte viability was diminished in GCARKO females, with a significant reduction in the percentage of oocytes fertilized after natural mating and, thus, in the rate of progression to the two-cell embryo stage (P < 0.05). In addition, compared with age-matched WT females, 6-mo-old GCARKO females exhibited significantly prolonged estrous cycles (P ≤ 0.05), suggesting altered hypothalamic-pituitary-gonadal feedback signaling. In conclusion, our findings revealed that selective loss of granulosa cell AR actions during preantral and antral stages of development leads to a premature reduction in female fecundity through reduced follicle health and oocyte viability.


Biology of Reproduction | 2004

Luteinizing Hormone Receptor-Mediated Effects on Initiation of Spermatogenesis in Gonadotropin-Deficient (hpg) Mice Are Replicated by Testosterone

Jennifer A. Spaliviero; Mark Jimenez; Charles M. Allan; David J. Handelsman

Abstract Testosterone (T) is an absolute requirement for spermatogenesis and is supplied by mature Leydig cells stimulated by LH. We previously showed in gonadotropin-deficient hpg mice that T alone initiates qualitatively complete spermatogenesis bypassing LH-dependent Leydig cell maturation and steroidogenesis. However, because maximal T effects do not restore testis weight or germ cell number to wild-type control levels, additional Leydig cell factors may be involved. We therefore examined 1) whether chronic hCG administration to restore Leydig cell maturation and steroidogenesis can restore quantitatively normal spermatogenesis and testis development and 2) whether nonandrogenic Leydig cell products are required to initiate spermatogenesis. Weanling hpg mice were administered hCG (0.1–100 IU i.p. injection three times weekly) or T (1-cm subdermal Silastic implant) for 6 weeks, after which stereological estimates of germinal cell populations, serum and testicular T content, and testis weight were evaluated. Human CG stimulated Leydig cell maturation and normalized testicular T content compared with T treatment where Leydig cells remained immature and inactive. The maximal hCG-induced increases in testis weight and serum T concentrations were similar to those for T treatment and produced complete spermatogenesis characterized by mature, basally located Sertoli cells (SCs) with tripartite nucleoli, condensed haploid sperm, and lumen development. Compared with T treatment, hCG increased spermatogonial numbers, but both hCG and T had similar effects on numbers of spermatocytes and round and elongated spermatids per testis as well as per SC. Nevertheless, testis weight and germ cell numbers per testis and per SC remained well below phenotypically normal controls, confirming the involvement of non-Leydig cell factors such as FSH for quantitative normalization of spermatogenesis. We conclude that hCG stimulation of Leydig cell maturation and steroidogenesis is not required, and that T alone mostly replicates the effects of hCG, to initiate spermatogenesis. Because T is both necessary and sufficient for initiation of spermatogenesis, it is likely that T is the main Leydig cell secretory product involved and that additional LH-dependent Leydig cell factors are not essential for induction of murine spermatogenesis.


Endocrinology | 2009

Sertoli Cell Androgen Receptor DNA Binding Domain Is Essential for the Completion of Spermatogenesis

Patrick Lim; Mathew Robson; Jenny Spaliviero; Kirsten J. McTavish; Mark Jimenez; Jeffrey D. Zajac; David J. Handelsman; Charles M. Allan

We examined the biological importance of Sertoli cell androgen receptor (AR) genomic interaction, using a Cre-loxP approach to selectively disrupt the AR DNA-binding domain (AR-DBD). Sertoli cell (SC)-specific transgenic Abpa or AMH promoters targeted Cre-mediated inframe excision of mouse Ar exon-3, encoding the AR-DBD second zinc-finger (ZF2), generating SC-specific mutant AR(DeltaZF2) lines designated Abp.SCAR(DeltaZF2) and AMH.SCAR(DeltaZF2), respectively. Both SCAR(DeltaZF2) lines produced infertile males exhibiting spermatogenic arrest, despite normal SC numbers and immunolocalized SC nuclear AR. Adult homozygous TgCre((+/+)) SCAR(DeltaZF2) or double-TgCre((+/-)) Abp/AMH.SCAR(DeltaZF2) males displayed equivalent small testes 30% of normal size, representing maximal Cre-loxP-disruption of Sertoli AR function. Hemizygous TgCre((+/-)) vs. homozygous TgCre((+/+)) Abp.SCAR(DeltaZF2) testes were larger (47% normal size) with more postmeiotic development, indicating dose-dependent Cre-mediated disruption of SC-specific AR-DBD activity. SCAR(DeltaZF2) males exhibited adult Leydig cell hypertrophy but normal serum testosterone levels. Sertoli cell-specific Rhox5 and Spinlw1 transcription, regulated by divergent or classical androgen-response elements, respectively, were both decreased in postnatal SCAR(DeltaZF2) vs. control testes, demonstrating SC-specific AR-DBD function as early as postnatal d 5. However, Rhox5 expression declined dose-dependently, whereas Spinlw1 expression increased, in adult TgCre((+/-)) and TgCre((+/+)) SCAR(DeltaZF2) testes, revealing differential temporal control for distinct AR-regulated transcripts. Androgen-repressed Ngfr was not up-regulated in SCAR(DeltaZF2) testes, suggesting maintenance of a nonclassical mechanism independent of AR-DBD. Thus, our unique SCAR(DeltaZF2) paradigm provided dose-dependent Cre-mediated disruption of testicular development and gene expression revealing that the AR-DBD is essential for SC function and postmeiotic spermatogenesis. Nongenomic or AR-DBD-independent pathways appear secondary or play no major independent role in SC function.


Endocrinology | 2010

Estradiol Induction of Spermatogenesis Is Mediated via an Estrogen Receptor-α Mechanism Involving Neuroendocrine Activation of Follicle-Stimulating Hormone Secretion

Charles M. Allan; John F. Couse; Ulla Simanainen; Jenny Spaliviero; Mark Jimenez; Karina F. Rodriguez; Kenneth S. Korach; David J. Handelsman

Both testosterone and its nonaromatizable metabolite dihydrotestosterone (DHT) induce spermatogenesis in gonadotropin-deficient hpg mice. Surprisingly, because aromatization is not required, estradiol (E2) also induces spermatogenesis and increases circulating FSH in hpg mice, but the mechanism remains unclear. We studied E2-induced spermatogenesis in hpg mice on an estrogen receptor (ER)-alpha (hpg/alphaERKO) or ERbeta (hpg/betaERKO) knockout or wild-type ER (hpg/WT) background treated with subdermal E2 or DHT implants for 6 wk. In hpg/WT and hpg/betaERKO, but not hpg/alphaERKO mice, E2 increased testis and epididymal weight, whereas DHT-induced increases were unaffected by ERalpha or ERbeta inactivation. E2 but not DHT treatment increased serum FSH (but not LH) in hpg/WT and hpg/betaERKO but not hpg/alphaERKO hpg mice. DHT or E2 alone increased (premeiotic) spermatogonia and (meiotic) spermatocytes without significant change in Sertoli cell numbers. DHT alone increased postmeiotic spermatids, regardless of ER presence, compared with variable ERalpha-dependent E2 postmeiotic responses. An ERalpha-mediated effect was confirmed by treating hpg mice for 6 wk by subdermal selective ER-alpha (16alpha-LE(2)) or ERbeta (8beta-VE(2)) agonist implants. ERalpha (but not ERbeta) agonist increased testis and epididymal weight, Sertoli cell, spermatogonia, meiotic, and postmeiotic germ cell numbers. Only ERalpha agonist markedly increased serum FSH, whereas either agonist induced small rises in serum LH. Administration of ERalpha agonist or E2 in the presence of functional ERalpha induced prominent gene expression of specific Sertoli (Eppin, Rhox5) and Leydig cell (Cyp11a1, Hsd3b1) markers. We conclude that E2-induced spermatogenesis in hpg mice involves an ERalpha-dependent neuroendocrine mechanism increasing blood FSH and Sertoli cell function.

Collaboration


Dive into the Charles M. Allan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirsty A. Walters

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Lim

The Heart Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge