Charles M. Conway
Bristol-Myers Squibb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles M. Conway.
Journal of Medicinal Chemistry | 2008
Andrew P. Degnan; Prasad V. Chaturvedula; Charles M. Conway; Deborah J. Cook; Carl D. Davis; Rex Denton; Xiaojun Han; Robert Macci; Neil R. Mathias; Paul Moench; Sokhom S. Pin; Shelly X. Ren; Richard Schartman; Laura Signor; George Thalody; Kimberly A. Widmann; Cen Xu; John E. Macor; Gene M. Dubowchik
Calcitonin gene-related peptide (CGRP) has been implicated in the pathogenesis of migraine. Early chemistry leads suffered from modest potency, significant CYP3A4 inhibition, and poor aqueous solubility. Herein, we describe the optimization of these leads to give 4 (BMS-694153), a molecule with outstanding potency, a favorable predictive toxicology profile, and remarkable aqueous solubility. Compound 4 has good intranasal bioavailability in rabbits and shows dose-dependent activity in validated in vivo and ex vivo migraine models.
Journal of Medicinal Chemistry | 2012
Guanglin Luo; Ling Chen; Charles M. Conway; Rex Denton; Deborah Keavy; Laura Signor; Walter Kostich; Kimberley A. Lentz; Kenneth S. Santone; Richard Schartman; Marc Browning; Gary Tong; John G. Houston; Gene M. Dubowchik; John E. Macor
Calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated clinical efficacy in the treatment of acute migraine. Herein, we describe the design, synthesis, and preclinical characterization of a highly potent, oral CGRP receptor antagonist BMS-927711 (8). Compound 8 has good oral bioavailability in rat and cynomolgus monkey, attractive overall preclinical properties, and shows dose-dependent activity in a primate model of CGRP-induced facial blood flow. Compound 8 is presently in phase II clinical trials.
ACS Medicinal Chemistry Letters | 2012
Guanglin Luo; Ling Chen; Charles M. Conway; Rex Denton; Deborah Keavy; Michael Gulianello; Yanling Huang; Walter Kostich; Kimberley A. Lentz; Stephen E. Mercer; Richard Schartman; Laura Signor; Marc Browning; John E. Macor; Gene M. Dubowchik
Calcitonin gene-related peptide (CGRP) receptor antagonists have been clinically shown to be effective in the treatment of migraine, but identification of potent and orally bioavailable compounds has been challenging. Herein, we describe the conceptualization, synthesis, and preclinical characterization of a potent, orally active CGRP receptor antagonist 5 (BMS-846372). Compound 5 has good oral bioavailability in rat, dog, and cynomolgus monkeys and overall attractive preclinical properties including strong (>50% inhibition) exposure-dependent in vivo efficacy in a marmoset migraine model.
Bioorganic & Medicinal Chemistry Letters | 2010
Sing-Yuen Sit; Charles M. Conway; Kai Xie; Robert L. Bertekap; Clotilde Bourin; Kevin D. Burris
A series of novel oxime carbamates have been identified as potent inhibitors of the key regulatory enzyme of the endocannabinoid signaling system, fatty acid amide hydrolase (FAAH). In this Letter, the rationale behind the discovery and the biological evaluations of this novel class of FAAH inhibitors are presented. Both in vitro and in vivo results of selected targets are discussed, along with inhibition kinetics and molecular modeling studies.(1).
Bioorganic & Medicinal Chemistry Letters | 2013
Yong-Jin Wu; Charles M. Conway; Li-Qiang Sun; Frederic Machet; Jie Chen; Ping Chen; Huan He; Clotilde Bourin; Vincenzo Calandra; Joseph Polino; Carl D. Davis; Karen Heman; Valentin K. Gribkoff; Christopher G. Boissard; Ronald J. Knox; Mark W. Thompson; William Fitzpatrick; David Weaver; David G. Harden; Joanne Natale; Steven I. Dworetzky; John E. Starrett
Acrylamide (S)-6, a potent and efficacious KCNQ2 (Kv7.2) opener, demonstrated significant activity in two models of neuropathic pain and in the formalin test, suggesting that KCNQ2 openers may be useful in the treatment of neuropathic pain including diabetic neuropathy.
Bioorganic & Medicinal Chemistry Letters | 2009
Andrew P. Degnan; Charles M. Conway; Richard A. Dalterio; Robert Macci; Stephen E. Mercer; Richard Schartman; Cen Xu; Gene M. Dubowchik; John E. Macor
The calcitonin gene-related peptide (CGRP) receptor has been implicated in the pathogenesis of migraine. A class of urethanamide derivatives has been identified as potent inhibitors of the CGRP receptor. Compound 20 was found to be among the most potent (IC(50)=17pM). It was shown to retain excellent aqueous solubility (>50mg/mL, pH 7) while dramatically improving solution stability as compared to our previously disclosed development candidate, BMS-694153 (1).
Bioorganic & Medicinal Chemistry Letters | 2012
Xiaojun Han; Rita L. Civiello; Charles M. Conway; Deborah A. Cook; Carl D. Davis; Robert Macci; Sokhom S. Pin; Shelly X. Ren; Richard Schartman; Laura Signor; George Thalody; Kimberly A. Widmann; Cen Xu; Prasad V. Chaturvedula; John E. Macor; Gene M. Dubowchik
We have systematically studied the effects of varying the central unnatural amino acid moiety on CGRP receptor antagonist potency and CYP inhibition in a series of ureidoamides. In this Letter, we report the discovery of compound 23, a potent CGRP receptor antagonist with only weak CYP3A4 inhibition. Unlike the triptans, compound 23 did not cause active constriction of ex vivo human cerebral arteries. At doses of 0.3-1 mg/kg (s.c.), 23 showed robust inhibition of CGRP-induced increases in marmoset facial blood flow, a validated migraine model. Ureidoamide 23 derives from a novel amino acid, 1H-indazol-5-yl substituted alanine as a tyrosine surrogate.
Bioorganic & Medicinal Chemistry Letters | 2012
Guanglin Luo; Ling Chen; Rita L. Civiello; Sokhom S. Pin; Cen Xu; Walter Kostich; Michelle Kelley; Charles M. Conway; John E. Macor; Gene M. Dubowchik
In our continuing efforts to identify CGRP receptor antagonists that can be dosed orally for the treatment of migraine headache, we have investigated a pyridine bioisosteric replacement of a polar amide portion of a previous lead compound, BMS-694153. Pyridine derivatives were discovered and their SAR was studied. Some of them showed excellent binding potency. However, oral bioavailability was low, even for compounds with good Caco-2 cell permeability.
The Journal of Neuroscience | 2017
Tomonori Takazawa; Papiya Choudhury; Chi-Kun Tong; Charles M. Conway; Grégory Scherrer; Pamela Flood; Jun Mukai; Amy B. MacDermott
The superficial dorsal horn is the synaptic termination site for many peripheral sensory fibers of the somatosensory system. A wide range of sensory modalities are represented by these fibers, including pain, itch, and temperature. Because the involvement of local inhibition in the dorsal horn, specifically that mediated by the inhibitory amino acids GABA and glycine, is so important in signal processing, we investigated regional inhibitory control of excitatory interneurons under control conditions and peripheral inflammation-induced mechanical allodynia. We found that excitatory interneurons and projection neurons in lamina I and IIo are dominantly inhibited by GABA while those in lamina IIi and III are dominantly inhibited by glycine. This was true of identified neuronal subpopulations: neurokinin 1 receptor-expressing (NK1R+) neurons in lamina I were GABA-dominant while protein kinase C gamma-expressing (PKCγ+) neurons at the lamina IIi–III border were glycine-dominant. We found this pattern of synaptic inhibition to be consistent with the distribution of GABAergic and glycinergic neurons identified by immunohistochemistry. Following complete Freunds adjuvant injection into mouse hindpaw, the frequency of spontaneous excitatory synaptic activity increased and inhibitory synaptic activity decreased. Surprisingly, these changes were accompanied by an increase in GABA dominance in lamina IIi. Because this shift in inhibitory dominance was not accompanied by a change in the number of inhibitory synapses or the overall postsynaptic expression of glycine receptor α1 subunits, we propose that the dominance shift is due to glycine receptor modulation and the depressed function of glycine receptors is partially compensated by GABAergic inhibition. SIGNIFICANCE STATEMENT Pain associated with inflammation is a sensation we would all like to minimize. Persistent inflammation leads to cellular and molecular changes in the spinal cord dorsal horn, including diminished inhibition, which may be responsible for enhance excitability. Investigating inhibition in the dorsal horn following peripheral inflammation is essential for development of improved ways to control the associated pain. In this study, we have elucidated regional differences in inhibition of excitatory interneurons in mouse dorsal horn. We have also discovered that the dominating inhibitory neurotransmission within specific regions of dorsal horn switches following peripheral inflammation and the accompanying hypersensitivity to thermal and mechanical stimuli. Our novel findings contribute to a more complete understanding of inflammatory pain.
Organic Letters | 2015
Guanglin Luo; Ling Chen; Charles M. Conway; Walter Kostich; John E. Macor; Gene M. Dubowchik
An asymmetric synthesis of novel heterocyclic analogue of the CGRP receptor antagonist rimegepant (BMS-927711, 3) is reported. The cycloheptane ring was constructed by an intramolecular Heck reaction. The application of Hayashi-Miyaura and Ellman reactions furnished the aryl and the amine chiral centers, while the separable diastereomeric third chiral center alcohols led to both carbamate and urea analogues. This synthetic approach was applicable to both 6- and 5-membered heterocycles as exemplified by pyrazine and thiazole derivatives.