Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles M. Ewing is active.

Publication


Featured researches published by Charles M. Ewing.


Nature Genetics | 1998

Evidence for a prostate cancer susceptibility locus on the X chromosome.

Jianfeng Xu; Deborah A. Meyers; Diha Freije; Sarah D. Isaacs; Kathy E. Wiley; Deborah Nusskern; Charles M. Ewing; Eric Wilkens; Piroska Bujnovszky; G. Steven Bova; Patrick C. Walsh; William B. Isaacs; Johanna Schleutker; Mika P. Matikainen; Teuvo L.J. Tammela; Tapio Visakorpi; Olli Kallioniemi; Rebecca Berry; Daniel J. Schaid; Amy J. French; Shannon K. McDonnell; Jennifer J. Schroeder; Michael L. Blute; Stephen N. Thibodeau; Henrik Grönberg; Monika Emanuelsson; Jan-Erik Damber; Anders Bergh; Björn Anders Jonsson; Jeffrey R. Smith

Over 200,000 new prostate cancer cases are diagnosed in the United States each year, accounting for more than 35% of all cancer cases affecting men, and resulting in 40,000 deaths annually1. Attempts to characterize genes predisposing to prostate cancer have been hampered by a high phenocopy rate, the late age of onset of the disease and, in the absence of distinguishing clinical features, the inability to stratify patients into subgroups relative to suspected genetic locus heterogeneity. We previously performed a genome-wide search for hereditary prostate cancer (HPC) genes, finding evidence of a prostate cancer susceptibility locus on chromosome 1 (termed HPC1; ref. 2). Here we present evidence for the location of a second prostate cancer susceptibility gene, which by heterogeneity estimates accounts for approximately 16% of HPC cases. This HPC locus resides on the X chromosome (Xq27-28), a finding consistent with results of previous population-based studies suggesting an X-linked mode of HPC inheritance. Linkage to Xq27-28 was observed in a combined study population of 360 prostate cancer families collected at four independent sites in North America, Finland and Sweden. A maximum two-point lod score of 4.60 was observed at DXS1113, θ=0.26, in the combined data set. Parametric multipoint and non-parametric analyses provided results consistent with the two-point analysis. evidence for genetic locus heterogeneity was observed, with similar estimates of the proportion of linked families in each separate family collection. Genetic mapping of the locus represents an important initial step in the identification of an X-linked gene implicated in the aetiology of HPC.


Nature Medicine | 2009

Copy Number Analysis Indicates Monoclonal Origin of Lethal Metastatic Prostate Cancer

Wennuan Liu; Sari Laitinen; Sofia Khan; Mauno Vihinen; Jeanne Kowalski; Guoqiang Yu; Li Chen; Charles M. Ewing; Mario A. Eisenberger; Michael A. Carducci; William G. Nelson; Srinivasan Yegnasubramanian; Jun Luo; Yue Wang; Jianfeng Xu; William B. Isaacs; Tapio Visakorpi; G. Steven Bova

Many studies have shown that primary prostate cancers are multifocal and are composed of multiple genetically distinct cancer cell clones. Whether or not multiclonal primary prostate cancers typically give rise to multiclonal or monoclonal prostate cancer metastases is largely unknown, although studies at single chromosomal loci are consistent with the latter case. Here we show through a high-resolution genome-wide single nucleotide polymorphism and copy number survey that most, if not all, metastatic prostate cancers have monoclonal origins and maintain a unique signature copy number pattern of the parent cancer cell while also accumulating a variable number of separate subclonally sustained changes. We find no relationship between anatomic site of metastasis and genomic copy number change pattern. Taken together with past animal and cytogenetic studies of metastasis and recent single-locus genetic data in prostate and other metastatic cancers, these data indicate that despite common genomic heterogeneity in primary cancers, most metastatic cancers arise from a single precursor cancer cell. This study establishes that genomic archeology of multiple anatomically separate metastatic cancers in individuals can be used to define the salient genomic features of a parent cancer clone of proven lethal metastatic phenotype.


Nature Genetics | 2002

Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk

Jianfeng Xu; S. Lilly Zheng; Akira Komiya; Josyf C. Mychaleckyj; Sarah D. Isaacs; Jennifer J. Hu; David A. Sterling; Ethan M. Lange; Gregory A. Hawkins; Aubrey R. Turner; Charles M. Ewing; Dennis A. Faith; Jill R. Johnson; Hiroyoshi Suzuki; Piroska Bujnovszky; Kathleen E. Wiley; Angelo M. DeMarzo; G. Steven Bova; Bao-Li Chang; M. Craig Hall; David L. McCullough; Alan W. Partin; Vahan S. Kassabian; John D. Carpten; Joan E. Bailey-Wilson; Jeffrey M. Trent; Jill A. Ohar; Eugene R. Bleecker; Patrick C. Walsh; William B. Isaacs

Deletions on human chromosome 8p22–23 in prostate cancer cells and linkage studies in families affected with hereditary prostate cancer (HPC) have implicated this region in the development of prostate cancer. The macrophage scavenger receptor 1 gene (MSR1, also known as SR-A) is located at 8p22 and functions in several processes proposed to be relevant to prostate carcinogenesis. Here we report the results of genetic analyses that indicate that mutations in MSR1 may be associated with risk of prostate cancer. Among families affected with HPC, we identified six rare missense mutations and one nonsense mutation in MSR1. A family-based linkage and association test indicated that these mutations co-segregate with prostate cancer (P = 0.0007). In addition, among men of European descent, MSR1 mutations were detected in 4.4% of individuals affected with non-HPC as compared with 0.8% of unaffected men (P = 0.009). Among African American men, these values were 12.5% and 1.8%, respectively (P = 0.01). These results show that MSR1 may be important in susceptibility to prostate cancer in men of both African American and European descent.


The New England Journal of Medicine | 2012

Germline Mutations in HOXB13 and Prostate-Cancer Risk

Charles M. Ewing; Anna M. Ray; Ethan M. Lange; Kimberly A. Zuhlke; Christiane M. Robbins; Waibhav Tembe; Kathleen E. Wiley; Sarah D. Isaacs; Dorhyun Johng; Yunfei Wang; Chris Bizon; Guifang Yan; Marta Gielzak; Alan W. Partin; Vijayalakshmi Shanmugam; Tyler Izatt; Shripad Sinari; David Craig; S. Lilly Zheng; Patrick C. Walsh; James E. Montie; Jianfeng Xu; John D. Carpten; William B. Isaacs; Kathleen A. Cooney

BACKGROUND Family history is a significant risk factor for prostate cancer, although the molecular basis for this association is poorly understood. Linkage studies have implicated chromosome 17q21-22 as a possible location of a prostate-cancer susceptibility gene. METHODS We screened more than 200 genes in the 17q21-22 region by sequencing germline DNA from 94 unrelated patients with prostate cancer from families selected for linkage to the candidate region. We tested family members, additional case subjects, and control subjects to characterize the frequency of the identified mutations. RESULTS Probands from four families were discovered to have a rare but recurrent mutation (G84E) in HOXB13 (rs138213197), a homeobox transcription factor gene that is important in prostate development. All 18 men with prostate cancer and available DNA in these four families carried the mutation. The carrier rate of the G84E mutation was increased by a factor of approximately 20 in 5083 unrelated subjects of European descent who had prostate cancer, with the mutation found in 72 subjects (1.4%), as compared with 1 in 1401 control subjects (0.1%) (P=8.5x10(-7)). The mutation was significantly more common in men with early-onset, familial prostate cancer (3.1%) than in those with late-onset, nonfamilial prostate cancer (0.6%) (P=2.0x10(-6)). CONCLUSIONS The novel HOXB13 G84E variant is associated with a significantly increased risk of hereditary prostate cancer. Although the variant accounts for a small fraction of all prostate cancers, this finding has implications for prostate-cancer risk assessment and may provide new mechanistic insights into this common cancer. (Funded by the National Institutes of Health and others.).


Genes, Chromosomes and Cancer | 1997

Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer

David F. Jarrard; G. Steven Bova; Charles M. Ewing; Sokhom S. Pin; Son H. Nguyen; Stephen B. Baylin; Paul Cairns; David Sidransky; James G. Herman; William B. Isaacs

The tumor suppressor gene CDKN2 (p16/MTS1) resides on chromosome 9p21 and encodes a 16 kDa inhibitor of the cyclin‐dependent kinases. Inactivation of CDKN2 by homozygous deletion, point mutation, and recently described aberrant methylation in the 5′ promoter region may increase progression through the cell cycle in tumors. In this study, we examine the CDKN2 gene for the presence of inactivating alterations in human prostate cancer. Sequence analysis of cell lines revealed no mutation in LNCaP, PC3, and TSU‐PRI and a missense mutation, GAC→TAC(asp to tyr), in exon 2 of the DU145 cell line at codon 76. No mutations were identified in three primary prostate cancers or in seven lymph node metastases. Loss of heterozygosity (LOH) was analyzed by analysis of microsatellite markers in the vicinity of the CDKN2 gene. LOH was detected in 12 (20%) of 60 primary tumors at one or more loci and in 13 (46%) of 28 metastases. Methylation analysis of the CpG‐rich promoter region revealed a dense methylation of CDKN2 in cell lines PC3, PPCI, and TSU‐PR1, and this was found to correlate with a lack of mRNA expression by reverse transcription‐polymerase chain reaction. A demethylating agent. 5‐aza‐2′‐deoxycytidine, induced reexpression when cells were exposed in vitro. DU145 and LNCaP expressed the CDKN2 transcript and were unmethylated in the promoter region. Three of twenty‐four (13%) primary prostate cancers and 1 of 12 metastatic tumors demonstrated promoter methylation. No normal prostate tissues were methylated at the CDKN2 gene promoter. One tumor was found to contain concomitant LOH and promoter methylation indicative of biallelic inactivation. A comprehensive analysis of CDKN2 in prostate cancer reveals that point mutations are infrequent, but gene deletion and methylation combine to inactivate CDKN2 in a subset of tumors. Moreover, alterations in this gene may represent a late event in prostate cancer progression. Genes Chromosom. Cancer 19:90–96, 1997.


The Prostate | 2000

Detection and analysis of β-catenin mutations in prostate cancer

Dennis R. Chesire; Charles M. Ewing; Jurga Sauvageot; G. Steven Bova; William B. Isaacs

E‐cadherin and α‐catenin are components of adherens junctions which mediate calcium‐dependent, cell‐cell adhesion in a homotypic manner. Both these molecules have been defined as useful tumor markers as their altered expression correlates with increased tumor aggressiveness and dedifferentiation. More recently, alterations of a third component of adherens junctions, β‐catenin, have been observed to play a role in several human cancers. Dysregulation of β‐catenin, either by direct mutation or by defects in interacting pathways/regulators, can result in its cytoplasmic accumulation and nuclear translocation. In the nucleus, β‐catenin forms a transcriptional complex capable of upregulating target genes, many of which encode proliferative factors. Given its oncogenic activity and connection to human cancer, we examined the β‐catenin gene and its expression in prostate cancer.


Oncogene | 2002

In vitro evidence for complex modes of nuclear β-catenin signaling during prostate growth and tumorigenesis

Dennis R. Chesire; Charles M. Ewing; Wesley R. Gage; William B. Isaacs

Understanding the molecular etiology of prostate cancer (CaP) progression is paramount for broadening current diagnostic and therapeutic modalities. Current interest in the role of wnt pathway signaling in prostate tumorigenesis was generated with the finding of β-catenin mutation and corresponding nuclear localization in primary lesions. The recent finding of β-catenin-induced enhancement of androgen receptor (AR) function potentially ties β-catenin to key regulatory steps of prostate cell growth, differentiation, and transformation. By immunohistological analysis of metastatic tumors, we detected nuclear β-catenin in 20% of lethal CaP cases, suggesting a more common role for β-catenin in advanced disease than would be predicted by its mutation rate. Interestingly, β-catenin nuclear localization was found to occur concomitantly with androgen-induced regrowth of normal rat prostate. These in vivo observations likely implicate β-catenin involvement in both normal and neoplastic prostate physiology, thus prompting our interest in further characterizing modes of β-catenin signaling in prostate cells. Extending our previous findings, we demonstrate that transient β-catenin over-expression stimulates T cell factor (TCF) signaling in most CaP cell lines. Further, this activity is not subject to cross-regulation by phosphoinositide-3-kinase (PI3-K)/Akt signaling, a stimulatory pathway often upregulated in CaP upon PTEN inactivation. Consistent with a previous report, we observed that transient β-catenin over-expression enhances AR-mediated transcription off two natural target gene promoters. However, we were unable to recapitulate β-catenin-induced stimulation of ectopically expressed AR in AR-negative cells, suggesting that other AR-associated factors are required for this activity. Although LNCaP cells are capable of this mode of AR co-stimulation, stable expression of mutant β-catenin did not alter their proliferative response to androgen. In total, our characterization of β-catenin signaling in CaP reveals the complex nature of its activity in prostate tissue, indicating that β-catenin potentially contributes to multiple stimulatory inputs required for disease progression.


American Journal of Human Genetics | 2001

Linkage and Association Studies of Prostate Cancer Susceptibility: Evidence for Linkage at 8p22-23

Jianfeng Xu; Siqun L. Zheng; Gregory A. Hawkins; Dennis A. Faith; Brian D. Kelly; Sarah D. Isaacs; Kathleen E. Wiley; Bao-Li Chang; Charles M. Ewing; Piroska Bujnovszky; John D. Carpten; Eugene R. Bleecker; Patrick C. Walsh; Jeffrey M. Trent; Deborah A. Meyers; William B. Isaacs

Multiple lines of evidence have implicated the short arm of chromosome 8 as harboring genes important in prostate carcinogenesis. Although most of this evidence comes from the identification of frequent somatic alterations of 8p loci in prostate cancer cells (e.g., loss of heterozygosity), studies have also suggested a role for 8p genes in mediation of inherited susceptibility to prostate cancer. To further examine this latter possibility, we performed linkage analyses, in 159 pedigrees affected by hereditary prostate cancer (HPC), using 24 markers on the short arm of chromosome 8. In the complete set of families, evidence for prostate cancer linkage was found at 8p22-23, with a peak HLOD of 1.84 (P=.004), and an estimate of the proportion of families linked (alpha) of 0.14, at D8S1130. In the 79 families with average age at diagnosis >65 years, an allele-sharing LOD score of 2.64 (P=.0005) was observed, and six markers spanning a distance of 10 cM had LOD scores >2.0. Interestingly, the small number of Ashkenazi Jewish pedigrees (n=11) analyzed in this study contributed disproportionately to this linkage. Mutation screening in HPC probands and association analyses in case subjects (a group that includes HPC probands and unrelated case subjects) and unaffected control subjects were carried out for the putative prostate cancer-susceptibility gene, PG1, previously localized to the 8p22-23 region. No statistical differences in the allele, genotype, or haplotype frequencies of the SNPs or other sequence variants in the PG1 gene were observed between case and control subjects. However, case subjects demonstrated a trend toward higher homozygous rates of less-frequent alleles in all three PG1 SNPs, and overtransmission of a PG1 variant to case subjects was observed. In summary, these results provide evidence for the existence of a prostate cancer-susceptibility gene at 8p22-23. Evaluation of the PG1 gene and other candidate genes in this area appears warranted.


Analytical Biochemistry | 1987

The erasable Western blot

Scott H. Kaufmann; Charles M. Ewing; Joel H. Shaper

A method for successfully removing primary and secondary antibodies from nitrocellulose blots while preserving the originally immobilized polypeptides was developed. Polypeptides were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and electrophoretically transferred to nitrocellulose. Nonspecific binding sites were blocked with 5% (w/v) nonfat dried milk. After blots were reacted sequentially with antibodies directed against the antigen of interest and with radiolabeled secondary antibody, a 10-min wash in 5% (w/v) milk was required prior to drying and autoradiography. A 30-min incubation at 70 degrees C in 2% (w/v) sodium dodecyl sulfate containing 100 mM beta-mercaptoethanol quantitatively removed the antibodies and allowed reuse of the blot. A modification of this method similarly allowed reuse of Western blots when proteins were immobilized on nylon. Potential applications and limitations of this method are discussed.


American Journal of Human Genetics | 2001

Evaluation of Linkage and Association of HPC2/ELAC2 in Patients with Familial or Sporadic Prostate Cancer

Jianfeng Xu; Siqun L. Zheng; John D. Carpten; Nina N. Nupponen; Christiane M. Robbins; Juanita Mestre; Tracy Moses; Dennis A. Faith; Brian D. Kelly; Sarah D. Isaacs; Kathleen E. Wiley; Charles M. Ewing; Piroska Bujnovszky; Bao-Li Chang; Joan E. Bailey-Wilson; Eugene R. Bleecker; Patrick C. Walsh; Jeffrey M. Trent; Deborah A. Meyers; William B. Isaacs

To investigate the relationship between HPC2/ELAC2 and prostate cancer risk, we performed the following analyses: (1) a linkage study of six markers in and around the HPC2/ELAC2 gene at 17p11 in 159 pedigrees with hereditary prostate cancer (HPC); (2) a mutation-screening analysis of all coding exons of the gene in 93 probands with HPC; (3) family-based and population-based association study of common HPC2/ELAC2 missense variants in 159 probands with HPC, 249 patients with sporadic prostate cancer, and 222 unaffected male control subjects. No evidence for linkage was found in the total sample, nor in any subset of pedigrees based on characteristics that included age at onset, number of affected members, male-to-male disease transmission, or race. Furthermore, only the two previously reported missense changes (Ser217Leu and Ala541Thr) were identified by mutational analysis of all HPC2/ELAC exons in 93 probands with HPC. In association analyses, family-based tests did not reveal excess transmission of the Leu217 and/or Thr541 alleles to affected offspring, and population-based tests failed to reveal any statistically significant difference in the allele frequencies of the two polymorphisms between patients with prostate cancer and control subjects. The results of this study lead us to reject the three alternative hypotheses of (1) a highly penetrant, major prostate cancer-susceptibility gene at 17p11, (2) the allelic variants Leu217 or Thr541 of HPC2/ELAC2 as high-penetrance mutations, and (3) the variants Leu217 or Thr541 as low-penetrance, risk-modifying alleles. However, we did observe a trend of higher Leu217 homozygous carrier rates in patients than in control subjects. Considering the impact of genetic heterogeneity, phenocopies, and incomplete penetrance on the linkage and association studies of prostate cancer and on the power to detect linkage and association in our study sample, our results cannot rule out the possibility of a highly penetrant prostate cancer gene at this locus that only segregates in a small number of pedigrees. Nor can we rule out a prostate cancer-modifier gene that confers a lower-than-reported risk. Additional larger studies are needed to more fully evaluate the role of this gene in prostate cancer risk.

Collaboration


Dive into the Charles M. Ewing's collaboration.

Top Co-Authors

Avatar

William B. Isaacs

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Luo

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian P. Pavlovich

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge