Charles P. Lai
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles P. Lai.
Cancer Research | 2007
Charles P. Lai; John F. Bechberger; Roger J. Thompson; Brian A. MacVicar; Roberto Bruzzone; Christian C. Naus
Mammalian gap junction proteins, connexins, have long been implicated in tumor suppression. Recently, a novel family of proteins named pannexins has been identified as the mammalian counterpart of the invertebrate gap junction proteins, innexins. To date, pannexin 1 (Panx1) and pannexin 2 (Panx2) mRNAs are reported to be expressed in the brain. Most neoplastic cells, including rat C6 gliomas, exhibit reduced connexin expression, aberrant gap junctional intercellular communication (GJIC), and an increased proliferation rate. When gap junctions are up-regulated by transfecting C6 cells with connexin43, GJIC is restored and the proliferation is reduced. In this study, we examined the tumor-suppressive effects of Panx1 expression in C6 cells. Reverse transcription-PCR analysis revealed that C6 cells do not express any of the pannexin transcripts, whereas its nontumorigenic counterpart, rat primary astrocytes, exhibited mRNAs for all three pannexins. On generation of stable C6 transfectants with tagged Panx1 [myc or enhanced green fluorescent protein (EGFP)], a localization of Panx1 expression to the Golgi apparatus and plasma membrane was observed. In addition, Panx1 transfectants exhibited a flattened morphology, which differs greatly from the spindle-shaped control cells (EGFP only). Moreover, Panx1 expression increased gap junctional coupling as shown by the passage of sulforhodamine 101. Finally, we showed that stable expression of Panx1 in C6 cells significantly reduced cell proliferation in monolayers, cell motility, anchorage-independent growth, and in vivo tumor growth in athymic nude mice. Altogether, we conclude that the loss of pannexin expression may participate in the development of C6 gliomas, whereas restoration of Panx1 plays a tumor-suppressive role.
Cell Calcium | 2009
Elke De Vuyst; Nan Wang; Elke Decrock; Marijke De Bock; Mathieu Vinken; Marijke Van Moorhem; Charles P. Lai; Maxime Culot; Vera Rogiers; Roméo Cecchelli; Christian C. Naus; W. Howard Evans; Luc Leybaert
Connexin hemichannels have a low open probability under normal conditions but open in response to various stimuli, forming a release pathway for small paracrine messengers. We investigated hemichannel-mediated ATP responses triggered by changes of intracellular Ca(2+) ([Ca(2+)](i)) in Cx43 expressing glioma cells and primary glial cells. The involvement of hemichannels was confirmed with gja1 gene-silencing and exclusion of other release mechanisms. Hemichannel responses were triggered when [Ca(2+)](i) was in the 500nM range but the responses disappeared with larger [Ca(2+)](i) transients. Ca(2+)-triggered responses induced by A23187 and glutamate activated a signaling cascade that involved calmodulin (CaM), CaM-dependent kinase II, p38 mitogen activated kinase, phospholipase A2, arachidonic acid (AA), lipoxygenases, cyclo-oxygenases, reactive oxygen species, nitric oxide and depolarization. Hemichannel responses were also triggered by activation of CaM with a Ca(2+)-like peptide or exogenous application of AA, and the cascade was furthermore operational in primary glial cells isolated from rat cortex. In addition, several positive feed-back loops contributed to amplify the responses. We conclude that an elevation of [Ca(2+)](i) triggers hemichannel opening, not by a direct action of Ca(2+) on hemichannels but via multiple intermediate signaling steps that are adjoined by distinct signaling mechanisms activated by high [Ca(2+)](i) and acting to restrain cellular ATP loss.
ACS Nano | 2014
Charles P. Lai; Osama Mardini; Maria Ericsson; Shilpa Prabhakar; Casey A. Maguire; John W. Chen; Bakhos A. Tannous; Xandra O. Breakefield
Extracellular vesicles (EVs) are nanosized vesicles released by normal and diseased cells as a novel form of intercellular communication and can serve as an effective therapeutic vehicle for genes and drugs. Yet, much remains unknown about the in vivo properties of EVs such as tissue distribution, blood levels, and urine clearance, important parameters that will define their therapeutic effectiveness and potential toxicity. Here we combined Gaussia luciferase and metabolic biotinylation to create a sensitive EV reporter (EV-GlucB) for multimodal imaging in vivo, as well as monitoring of EV levels in the organs and biofluids ex vivo after administration of EVs. Bioluminescence and fluorescence-mediated tomography imaging on mice displayed a predominant localization of intravenously administered EVs in the spleen followed by the liver. Monitoring EV signal in the organs, blood, and urine further revealed that the EVs first undergo a rapid distribution phase followed by a longer elimination phase via hepatic and renal routes within six hours, which are both faster than previously reported using dye-labeled EVs. Moreover, we demonstrate systemically injected EVs can be delivered to tumor sites within an hour following injection. Altogether, we show the EVs are dynamically processed in vivo with accurate spatiotemporal resolution and target a number of normal organs as well as tumors with implications for disease pathology and therapeutic design.
Cell Death & Differentiation | 2009
Elke Decrock; E De Vuyst; Mathieu Vinken; M. Van Moorhem; Katleen Vranckx; Nan Wang; L. Van Laeken; M. De Bock; Katharina D'Herde; Charles P. Lai; Vera Rogiers; William Howard Evans; Christian C. Naus; Luc Leybaert
Gap junctions (GJs) have been demonstrated to communicate cell death signals from apoptotic to healthy cells, thereby spatially extending apoptosis. Before being incorporated into GJs, hemichannels (hemi-GJs) are normally closed but recent evidence suggests that they can be opened by various messengers and conditions, thereby forming a pore through which molecules can enter or leave the cell potentially leading to cell death. The aim of this study was to determine the contribution of GJs and hemichannels in the communication of apoptosis toward surrounding cells. We induced apoptosis in C6 glioma cells stably transfected with connexin (Cx)43, with cytochrome C (cytC) using in situ electroporation and found that healthy surrounding cells underwent apoptotic transformation. Work with various cell death markers, wild-type (WT) and Cx43-expressing cells, inhibitors of GJs and/or hemichannels, and Cx43 gene silencing showed that GJs contribute to the spread of apoptosis in a zone next to where apoptosis was triggered whereas hemichannels also promoted cell death beyond this area. Buffering cytoplasmic Ca2+ changes inhibited the spread of apoptosis in both cases. We conclude that Cx43 hemichannels, in concert with their GJ counterparts, play a role in communicating cytC-induced apoptotic cell death messages.
Frontiers in Physiology | 2012
Charles P. Lai; Xandra O. Breakefield
Extracellular membrane vesicles (EMVs) are nanometer sized vesicles, including exosomes and microvesicles capable of transferring DNAs, mRNAs, microRNAs, non-coding RNAs, proteins, and lipids among cells without direct cell-to-cell contact, thereby representing a novel form of intercellular communication. Many cells in the nervous system have been shown to release EMVs, implicating their active roles in development, function, and pathologies of this system. While substantial progress has been made in understanding the biogenesis, biophysical properties, and involvement of EMVs in diseases, relatively less information is known about their biological function in the normal nervous system. In addition, since EMVs are endogenous vehicles with low immunogenicity, they have also been actively investigated for the delivery of therapeutic genes/molecules in treatment of cancer and neurological diseases. The present review summarizes current knowledge about EMV functions in the nervous system under both physiological and pathological conditions, as well as emerging EMV-based therapies that could be applied to the nervous system in the foreseeable future.
Basic Research in Cardiology | 2013
Nan Wang; Elke De Vuyst; Raf Ponsaerts; Kerstin Boengler; Nicolás Palacios-Prado; Joris Wauman; Charles P. Lai; Marijke De Bock; Elke Decrock; Mélissa Bol; Mathieu Vinken; Vera Rogiers; Jan Tavernier; W. Howard Evans; Christian C. Naus; Feliksas F. Bukauskas; Karin R. Sipido; Gerd Heusch; Rainer Schulz; Geert Bultynck; Luc Leybaert
Connexin-43 (Cx43), a predominant cardiac connexin, forms gap junctions (GJs) that facilitate electrical cell–cell coupling and unapposed/nonjunctional hemichannels that provide a pathway for the exchange of ions and metabolites between cytoplasm and extracellular milieu. Uncontrolled opening of hemichannels in the plasma membrane may be deleterious for the myocardium and blocking hemichannels may confer cardioprotection by preventing ionic imbalance, cell swelling and loss of critical metabolites. Currently, all known hemichannel inhibitors also block GJ channels, thereby disturbing electrical cell–cell communication. Here we aimed to characterize a nonapeptide, called Gap19, derived from the cytoplasmic loop (CL) of Cx43 as a hemichannel blocker and examined its effect on hemichannel currents in cardiomyocytes and its influence in cardiac outcome after ischemia/reperfusion. We report that Gap 19 inhibits Cx43 hemichannels without blocking GJ channels or Cx40/pannexin-1 hemichannels. Hemichannel inhibition is due to the binding of Gap19 to the C-terminus (CT) thereby preventing intramolecular CT–CL interactions. The peptide inhibited Cx43 hemichannel unitary currents in both HeLa cells exogenously expressing Cx43 and acutely isolated pig ventricular cardiomyocytes. Treatment with Gap19 prevented metabolic inhibition-enhanced hemichannel openings, protected cardiomyocytes against volume overload and cell death following ischemia/reperfusion in vitro and modestly decreased the infarct size after myocardial ischemia/reperfusion in mice in vivo. We conclude that preventing Cx43 hemichannel opening with Gap19 confers limited protective effects against myocardial ischemia/reperfusion injury.
Nature Communications | 2015
Charles P. Lai; Edward Y. Kim; Christian E. Badr; Ralph Weissleder; Thorsten R. Mempel; Bakhos A. Tannous; Xandra O. Breakefield
Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA.
Journal of extracellular vesicles | 2017
Bogdan Mateescu; Emma J. K. Kowal; Bas W. M. van Balkom; Sabine Bartel; Suvendra N. Bhattacharyya; Edit I. Buzás; Amy H. Buck; Paola de Candia; Franklin Wang-Ngai Chow; Saumya Das; Tom A. P. Driedonks; Lola Fernández-Messina; Franziska Haderk; Andrew F. Hill; J Jones; Kendall Van Keuren-Jensen; Charles P. Lai; Cecilia Lässer; Italia Di Liegro; Taral R. Lunavat; Magdalena J. Lorenowicz; Sybren L. N. Maas; Imre Mäger; María Mittelbrunn; Stefan Momma; Kamalika Mukherjee; Muhammad Nawaz; D. Michiel Pegtel; Michael W. Pfaffl; Raymond M. Schiffelers
ABSTRACT The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNA-encoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolation methods, optimisation of methodologies to isolate and characterise minute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data.
Neuro-oncology | 2016
Kristan E. van der Vos; Erik R. Abels; Xuan Zhang; Charles P. Lai; Esteban Carrizosa; Derek Oakley; Shilpa Prabhakar; Osama Mardini; Matheus H.W. Crommentuijn; Johan Skog; Anna M. Krichevsky; Anat Stemmer-Rachamimov; Thorsten R. Mempel; Joseph El Khoury; Suzanne E. Hickman; Xandra O. Breakefield
BACKGROUND To understand the ability of gliomas to manipulate their microenvironment, we visualized the transfer of vesicles and the effects of tumor-released extracellular RNA on the phenotype of microglia in culture and in vivo. METHODS Extracellular vesicles (EVs) released from primary human glioblastoma (GBM) cells were isolated and microRNAs (miRNAs) were analyzed. Primary mouse microglia were exposed to GBM-EVs, and their uptake and effect on proliferation and levels of specific miRNAs, mRNAs, and proteins were analyzed. For in vivo analysis, mouse glioma cells were implanted in the brains of mice, and EV release and uptake by microglia and monocytes/macrophages were monitored by intravital 2-photon microscopy, immunohistochemistry, and fluorescence activated cell sorting analysis, as well as RNA and protein levels. RESULTS Microglia avidly took up GBM-EVs, leading to increased proliferation and shifting of their cytokine profile toward immune suppression. High levels of miR-451/miR-21 in GBM-EVs were transferred to microglia with a decrease in the miR-451/miR-21 target c-Myc mRNA. In in vivo analysis, we directly visualized release of EVs from glioma cells and their uptake by microglia and monocytes/macrophages in brain. Dissociated microglia and monocytes/macrophages from tumor-bearing brains revealed increased levels of miR-21 and reduced levels of c-Myc mRNA. CONCLUSIONS Intravital microscopy confirms the release of EVs from gliomas and their uptake into microglia and monocytes/macrophages within the brain. Our studies also support functional effects of GBM-released EVs following uptake into microglia, associated in part with increased miRNA levels, decreased target mRNAs, and encoded proteins, presumably as a means for the tumor to manipulate its environs.
Oncogene | 2009
Charles P. Lai; J F Bechberger; Christian C. Naus
Connexins (Cxs), the gap junction proteins, have been found to be downregulated in many types of cancers including gliomas. By restoring gap junctional communication in cancer cell models, the neoplastic phenotype can be reversed, suggesting Cxs are tumor suppressors. Pannexin2 (Panx2) is a member of the novel gap junction protein family, Panxs, and it has been proposed as a brain-specific protein. Recently, gene array analysis showed an overall reduction of Panx2 in gliomas, and a direct correlation was observed between Panx2 expression and post-diagnosis survival in patients. In this study, we explored the potential inverse correlation between Panx2 and glioma oncogenicity. A decrease or absence of Panx2 expression in a panel of human glioma cell lines was found, whereas an appreciable amount of Panx2 was detected in both human brain and astrocytes. Stable Panx2 expression revealed a flattened morphology and increased cell–cell contacts in rat C6 glioma cells similar to Panx1. However, in contrast to Panx1 and Panx3, Panx2 was predominately detected in the cytoplasm in vesicle-like patterns but not at the plasma membrane. Coexpression of Panx2 and Panx1 did not show colocalization of both Panxs. Strikingly, restoration of Panx2 expression significantly reduced in vitro oncogenicity parameters, including monolayer saturation density and anchorage-independent growth, as well as in vivo tumor growth. This study suggests a role of aberrant Panx2 expression during gliomagenesis, and that Panx2 independently functions as a negative growth regulator without Panx1.