Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles P. Sloan is active.

Publication


Featured researches published by Charles P. Sloan.


Bioorganic & Medicinal Chemistry Letters | 2003

Indanyl piperazines as melatonergic MT2 selective agents

Ronald J. Mattson; John D. Catt; Daniel J. Keavy; Charles P. Sloan; James R. Epperson; Qi Gao; Donald B. Hodges; Lawrence G. Iben; Cathy D. Mahle; Elaine Ryan; Frank D. Yocca

Optimization of a benzyl piperazine pharmacophore produced N-acyl-4-indanyl-piperazines that bind with high affinity to melatonergic MT(2) receptors. (R)-4-(2,3-dihydro-6-methoxy-1H-inden-1-yl)-N-ethyl-1-piperazine-carboxamide fumarate (13) is a water soluble, selective MT(2) agonist, which produces advances in circadian phase in rats at doses of 1-56 mg/kg that are no different from those of melatonin at 1 mg/kg. Unlike melatonin, 13 produced only weak contractile effects in rat tail artery.


Bioorganic & Medicinal Chemistry Letters | 2003

Development of a presynaptic 5-HT1A antagonist.

Ronald J. Mattson; John D. Catt; Charles P. Sloan; Qi Gao; Richard B Carter; Anthony J. Gentile; Cathy D. Mahle; F.Fatima Matos; Rachel T. McGovern; Cam VanderMaelen; Frank D. Yocca

A new 5-HT(1A) silent antagonist 14 (5-HT(1A) IC(50)=2.2 nM) antagonizes the effects of agonists on reciprocal forepaw treading behavior, on neuronal firing in the rat dorsal raphé, and on 5-HT(1A) release in the raphé and hippocampus. While 14 alone was inactive in the social interaction paradigm, it completely reversed the social interaction activity of the serotonergic compounds (buspirone, 1, and 2).


Bioorganic & Medicinal Chemistry Letters | 2008

Carbamate-appended N-alkylsulfonamides as inhibitors of γ-secretase

Carl P. Bergstrom; Charles P. Sloan; Wai-Yu Lau; David W. Smith; Ming Zheng; Steven Hansel; Craig Polson; Jason A. Corsa; Donna M. Barten; Kevin M. Felsenstein; Susan B. Roberts

The synthesis and gamma-secretase inhibition data for a series of carbamate-appended N-alkylsulfonamides are described. Carbamate 54 was found to significantly reduce brain Abeta in transgenic mice. 54 was also found to possess markedly improved brain levels in transgenic mice compared to previously disclosed 1 and 2.


Journal of Medicinal Chemistry | 2010

Conformationally restricted homotryptamines. Part 7: 3-cis-(3-aminocyclopentyl)indoles as potent selective serotonin reuptake inhibitors.

H. Dalton King; Zhaoxing Meng; Jeffrey A. Deskus; Charles P. Sloan; Qi Gao; Brett R. Beno; Edward S. Kozlowski; Melissa A. Lapaglia; Gail K. Mattson; Thaddeus F. Molski; Matthew T. Taber; Nicholas J. Lodge; Ronald J. Mattson; John E. Macor

A series of conformationally restricted homotryptamines has been synthesized and shown to be potent inhibitors of hSERT. Conformational restriction of the homotryptamine side chain was attained by the insertion of a cyclopentyl ring, with the indole ring and the terminal dialkylamino group occupying the 1- and 3-positions, respectively. Nitrile and fluoro substitutions at the indole 5-position gave highest hSERT potency. Preferred cyclopentane ring stereochemistry in both series was cis (1S,3R for 5-CN compound 8a, 1R,3S for 5-F compound 9a). High hSERT binding affinity was observed for 8a and 9a (0.22 and 0.63 nM, respectively). The corresponding trans isomers were 4-9 times less potent. 8a, dosed at 1 and 3 mg/kg po, produced a robust, dose-dependent increase in extracellular serotonin in the frontal cortex of rats, similar to that induced by paroxetine at 5 mg/kg, po. By contrast, 9a did not produce a significant increase in extracellular serotonin in rat frontal cortex at 3 mg/kg po due to relatively low brain and plasma levels.


Current Drug Metabolism | 2006

In Vitro and In Vivo Metabolism of a Gamma-Secretase Inhibitor BMS-299897 and Generation of Active Metabolites in Milligram Quantities with a Microbial Bioreactor

Donglu Zhang; Ronald L. Hanson; Vikram Roongta; Douglas D. Dischino; Qi Gao; Charles P. Sloan; Craig Polson; Daniel J. Keavy; Ming Zheng; James Mitroka; Suzanne Wehrli; Suresh Yeola

BMS-299897 is a gamma-secretase inhibitor that has the potential for treatment of Alzheimers disease. The metabolism of [(14)C]BMS-299897 was investigated in human liver microsomes, in rat, dog, monkey and human hepatocytes and in bile duct cannulated rats. Seven metabolites (M1-M7) were identified from in vitro and in vivo studies. LC-MS/MS analysis showed that M1 and M2 were regioisomeric acylglucuronide conjugates of BMS-299897. Metabolites M3, M4 and M6 were identified as monohydroxylated metabolites of BMS-299897 and M5 was identified as the dehydrogenated product of monooxygenated BMS-299897. In vivo, 52% of the radioactive dose was excreted in bile within 0-6 h from bile duct cannulated rats following a single oral dose of 15 mg/kg of [(14)C]BMS-299897. Glucuronide conjugates, M1 and M2 accounted for 80% of the total radioactivity in rat bile. In addition to M1 and M2, M7 was observed in rat bile which was identified as a glucuronide conjugate of an oxidative metabolite M5. For structure elucidation and pharmacological activity testing of the metabolites, ten microbial cultures were screened for their ability to metabolize BMS-299897 to form these metabolites. Among them, the fungus Cunninghamella elegans produced two major oxidative metabolites M3 and M4 that had the same HPLC retention time and mass spectral properties as those found in in vitro incubations. NMR analysis indicated that M3 and M4 were stereoisomers, with the hydroxyl group on the benzylic position. However, M3 and M4 were unstable and converted to their corresponding lactones readily. Based on x-ray analysis of the synthetically prepared lactone of M3, the stereochemistry of benzylic hydroxyl group was assigned as the R configuration. Both the hydroxy metabolites (M3 and M4) and the lactone of M3 showed gamma-secretase inhibition with IC(50) values similar to that of the parent compound. This study demonstrates the usefulness of microbial systems as bioreactors to generate metabolites of BMS-299897 in large quantities for structure elucidation and activity testing. This study also demonstrates the biotransformation profile of BMS-299897 is qualitatively similar across the species including rat, dog, monkey and human which provides a basis to support rat, dog and monkey as preclinical models for toxicological testing.


Archive | 1996

5-amino-6-cyclohexyl-4-hydroxy-hexanamide derivatives as inhibitors of β-amyloid protein production

Kevin M. Felsenstein; David W. Smith; Michael A. Poss; Prasad V. Chaturvedula; Charles P. Sloan


Archive | 1996

Dihydropyridine npy antagonists: piperazine derivatives

Graham S. Poindexter; Marc Bruce; Graham Johnson; Michael R. Kozlowski; Karen Leboulluec; Ivo Monkovic; Ramakrishna Seethala; Charles P. Sloan


Bioorganic & Medicinal Chemistry Letters | 2007

Conformationally restricted homotryptamines 3. Indole tetrahydropyridines and cyclohexenylamines as selective serotonin reuptake inhibitors.

Jeffrey A. Deskus; James R. Epperson; Charles P. Sloan; Joseph A. Cipollina; Pierre Dextraze; Jingfang Qian-Cutrone; Qi Gao; Baoqing Ma; Brett R. Beno; Gail K. Mattson; Thaddeus F. Molski; Rudolph Krause; Matthew T. Taber; Nicholas J. Lodge; Ronald J. Mattson


Journal of Organic Chemistry | 1990

ORTHO-DIRECTED LITHIATION IN PI -DEFICIENT DIAZINYL HETEROCYCLES

Ronald J. Mattson; Charles P. Sloan


Archive | 1994

Antimigraine derivatives of indolylcycloalkanylamines

Joseph A. Cipollina; Jonas A. Gylys; Ronald J. Mattson; Charles P. Sloan

Collaboration


Dive into the Charles P. Sloan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Gao

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge