Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles R. Bacon is active.

Publication


Featured researches published by Charles R. Bacon.


Journal of Volcanology and Geothermal Research | 1983

Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, U.S.A.

Charles R. Bacon

New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber ∼ 7000 yr B.P. The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone ∼ 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation ∼ 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until ∼ 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between ∼ 22,000 and ∼ 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is ∼ 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber. Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ± 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of ∼ 200 yr before the climactic eruption. The climactic eruption began 6845 ± 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of ∼ 4−12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall. A total of ∼ 51−59 km3 of magma was ejected in the precursory and climactic eruptions, and ∼ 40−52 km3 of Mount Mazama was lost by caldera formation. The spectacular compositional zonation shown by the climactic ejecta — rhyodacite followed by subordinate andesite and mafic andesite — reflects partial emptying of a zoned system, halted when the crystal-rich magma became too viscous for explosive fragmentation. This zonation was probably brought about by convective separation of low-density, evolved magma from underlying mafic magma. Confinement of postclimactic eruptive activity to the caldera attests to continuing existence of the Mazama magmatic system.


Contributions to Mineralogy and Petrology | 1988

Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

Charles R. Bacon; Timothy H. Druitt

The climactic eruption of Mount Mazama has long been recognized as a classic example of rapid eruption of a substantial fraction of a zoned magma body. Increased knowledge of eruptive history and new chemical analyses of ∼350 wholerock and glass samples of the climactic ejecta, preclimactic rhyodacite flows and their inclusions, postcaldera lavas, and lavas of nearby monogenetic vents are used here to infer processes of chemical evolution of this late Pleistocene — Holocene magmatic system. The 6845±50 BP climactic eruption vented ∼50 km3 of magma to form: (1) rhyodacite fall deposit; (2) welded rhyodacite ignimbrite; and (3) lithic breccia and zoned ignimbrite, these during collapse of Crater Lake caldera. Climactic ejecta were dominantly homogeneous rhyodacite (70.4±0.3% SiO2), followed by subordinate andesite and cumulate scoriae (48–61% SiO2). The gap in wholerock composition reflects mainly a step in crystal content because glass compositions are virtually continuous. Two types of scoriae are distinguished by different LREE, Rb, Th, and Zr, but principally by a twofold contrast in Sr content: High-Sr (HSr) and low-Sr (LSr) scoriae. HSr scoriae were erupted first. Trace element abundances indicate that HSr and LSr scoriae had different calcalkaline andesite parents; basalt was parental to some mafic cumulate scoriae. Parental magma compositions reconstructed from scoria wholerock and glass data are similar to those of inclusions in preclimactic rhyodacites and of aphyric lavas of nearby monogenetic vents.Preclimactic rhyodacite flows and their magmatic inclusions give insight into evolution of the climactic chamber. Evolved rhyodacite flows containing LSr andesite inclusions were emplaced between ∼30000 and ∼25000 BP. At 7015±45 BP, the Llao Rock vent produced a zoned rhyodacite pumice fall, then rhyodacite lava with HSr andesite inclusions. The Cleetwood rhyodacite flow, emplaced immediately before the climactic eruption and compositionally identical to climactic rhyodacite (volatile-free), contains different HSr inclusions from Llao Rock. The change from LSr to HSr inclusions indicates replenishment of the chamber with andesite magma, perhaps several times, in the latest Pleistocene to early Holocene.Modeling calculations and wholerock-glass relations suggest than: (1) magmas were derived mainly by crystallization differentiation of andesite liquid; (2) evolved preclimactic rhyodacite probably was derived from LSr andesite; (3) rhyodacites contain a minor component of partial melt from wall rocks, and (4) climactic and compositionally similar rhyodacites probably formed by mixing of evolved rhyodacite with HSr derivative liquid(s) after replenishment of the chamber with HSr andesite magma. Density considerations permit a model for growth and evolution of the chamber in which andesite recharge magma ponded repeatedly between cumulates and rhyodacite magma. Convective cooling of this andesite resulted in rapid crystallization and upward escape of buoyant derivative liquid which mixed with overlying, convecting rhyodacite. The evolved rhyodacites were erupted early in the chambers history and(or) near its margins. Postcaldera andesite lavas may be hybrids composed of LSr cumulates mixed with remnant climactic rhyodacite. Younger postcaldera rhyodacite probably formed by fractionation of similar andesite and assimilation of partial melts of wallrocks.Uniformity of climactic rhyodacite suggests homogeneous silicic ejecta from other volcanoes resulted from similar replenishment-driven convective mixing. Calcalkaline pluton compositions and their internal zonation can be interpreted in terms of the Mazama system frozen at various times in its history.


Geology | 1999

Gas-driven filter pressing in magmas

Thomas W. Sisson; Charles R. Bacon

Most silicic and some mafic magmas expand via second boiling if they crystallize at depths of about 10 km or less. The buildup of gas pressure due to second boiling can be relieved by expulsion of melt out of the region of crystallization, and this process of gas-driven filter pressing assists the crystallization differentiation of magmas. For gas-driven filter pressing to be effective, the region of crystallization must inflate slowly relative to buildup of pressure and expulsion of melt. These conditions are satisfied in undercooled magmatic inclusions and in thin sheets of primitive magma underplating cooler magma reservoirs. Gas-driven filter pressing thereby adds fractionated melt to magma bodies. Gas-driven filter pressing is probably the dominant process by which highly evolved melts segregate from crystal mush to form aplitic dikes in granitic plutons; this process could also account for the production of voluminous, crystal-poor rhyolites.


Geochimica et Cosmochimica Acta | 1989

Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts

Charles R. Bacon

Abstract Accessory minerals commonly occur attached to or included in the major crystalline phases of felsic and some intermediate igneous rocks. Apatite is particularly common as inclusions, but Fe-Ti oxides, pyrrhotite, zircon, monazite, chevkinite and xenotime are also known from silicic rocks. Accessories may nucleate near the host crystal/ liquid interface as a result of local saturation owing to formation of a differentiated chemical boundary layer in which accessory mineral solubility would be lower than in the surrounding liquid. Differentiation of this boundary layer would be greatest adjacent to ferromagnesian phenocrysts, especially Fe-Ti oxides; it is with oxides that accessories are most commonly associated in rocks. A boundary layer may develop if the crystal grows more rapidly than diffusion can transport incorporated and rejected elements to and from the phenocryst. Diffusion must dominate over convection as a mode of mass transfer near the advancing crystal/liquid interface in order for a boundary layer to exist. Accumulation of essential structural constituent elements of accessory minerals owing to their slow diffusion in evolved silicate melt also may force local saturation, but this is not a process that applies to all cases. Local saturation is an attractive mechanism for enhancing fractionation during crystallization differentiation. If accessory minerals attached to or included in phenocrysts formed because of local saturation, their host phenocrysts must have grown rapidly when accessories nucleated in comparison to lifetimes of magma reservoirs. Some inconsistencies remain in a local saturation origin for accessory phases that cannot be evaluated without additional information.


Contributions to Mineralogy and Petrology | 1984

Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California

Charles R. Bacon; Jenny Metz

Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone.Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55–61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted.The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller ΔT. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted.


Geological Society of America Bulletin | 2006

Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon

Charles R. Bacon; Marvin A. Lanphere

Geologic mapping, K-Ar, and 40 Ar/ 39 Ar age determinations, supplemented by paleomagnetic measurements and geochemical data, are used to quantify the Quaternary volcanic history of the Crater Lake region in order to define processes and conditions that led to voluminous explosive eruptions. The Cascade arc volcano known as Mount Mazama collapsed during its climactic eruption of ∼50 km 3 of mainly rhyodacitic magma ∼7700 yr ago to form Crater Lake caldera. The Mazama edifice was constructed on a Pleistocene silicic lava field, amidst monogenetic and shield volcanoes ranging from basalt to andesite similar to parental magmas for Mount Mazama. Between 420 ka and 35 ka, Mazama produced medium-K andesite and dacite in 2:1 proportion. The edifice was built in many episodes; some of the more voluminous occurred approximately coeval with volcanic pulses in the surrounding region, and some were possibly related to deglaciation following marine oxygen isotope stages (MIS) 12, 10, 8, 6, 5.2, and 2. Magmas as evolved as dacite erupted many times, commonly associated with or following voluminous andesite effusion. Establishment of the climactic magma chamber was under way when the first preclimactic rhyodacites vented ca. 27 ka. The silicic melt volume then grew incrementally at an average rate of 2.5 km 3 k.y. −1 for nearly 20 k.y. The climactic eruption exhausted the rhyodacitic magma and brought up crystal-rich andesitic magma, mafic cumulate mush, and wall-rock granodiorite. Postcaldera volcanism produced 4 km 3 of andesite during the first 200–500 yr after collapse, followed at ca. 4800 yr B.P. by 0.07 km 3 of rhyodacite. The average eruption rate for all Mazama products was ∼0.4 km 3 k.y. −1 , but major edifice construction episodes had rates of ∼0.8 km 3 k.y. −1 . The long-term eruption rate for regional monogenetic and shield volcanoes was d∼0.07 km 3 k.y. −1 , but only ∼0.02 km 3 k.y. −1 when the two major shields are excluded. Plutonic xenoliths and evidence for crystallization differentiation imply that the amount of magma intruded beneath Mount Mazama is several times that which has been erupted. The eruptive and intrusive history reflects competition between (1) crystallization driven by degassing and hydrothermal cooling and (2) thermal input from a regional magma flux focused at Mazama. Before ca. 30 ka, relatively small volumes of nonerupted derivative magma crystallized to form a composite pluton because the upper crust had not been heated sufficiently to sustain voluminous convecting crystal-poor melt. Subsequently, and perhaps not coincidentally, during MIS 2, a large volume of eruptible silicic magma accumulated in the climactic chamber, probably because of heating associated with mantle input to the roots of the system as suggested by eruption of unusually primitive magnesian basaltic andesite and tholeiite west of Mazama.


Contributions to Mineralogy and Petrology | 1989

Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

Timothy H. Druitt; Charles R. Bacon

Evolution of the magma chamber at Mount Mazama involved repeated recharge by two types of andesite (high-Sr and low-Sr), crystal fractionation, crystal accumulation, assimilation, and magma mixing (Bacon and Druitt 1988). This paper addresses the modal compositions, textures, mineral chemistry and magmatic temperatures of (i) products of the 6845±50 BP climactic eruption, (ii) blocks of partially fused granitoid wallrock found in the ejecta, and (iii) preclimactic rhyodacitic lavas leaked from the chamber in late Pleistocene and early Holocene time. Immediately prior to the climactic eruption the chamber contained ≳ 40 km3 of rhyodacite (10 vol% plag + opx + aug + hb + mt + ilm, ∼880° C) overlying high-Sr andesite and cumulus-crystal mush (28–51 vol% plag + hb ± opx ± aug + mt ± ilm, 880° to ≥950° C), which in turn overlay low-Sr crystal mush (50–66 vol% plag + opx + aug ± hb ± ol + mt + ilm, 890° to ≥950† C). Despite the well known compositional gap in the ejecta, no thermal discontinuity existed in the chamber. Pre-eruptive water contents of pore liquids in most high-Sr and low-Sr mushes were 4–6 wt%, but on average the high-Sr mushes were slightly richer in water. Although parental magmas of the crystal mushes were andesitic, xenocrysts of bytownite and Ni-rich magnesian olivine in some scoriae record the one-time injection of basalt into the chamber. Textures in ol-bearing scoriae preserve evidence for the reactions ol + liq = opx and ol + aug + liq(+ plag?) = hb, which occurred in andesitic liquids at Mount Mazama. Strontium abundances in plagioclase phenocrysts constrain the petrogenesis of preclimactic and climactic rhyodacites. Phenocryst cores derived from high-Sr and low-Sr magmas have different Sr contents which can be resolved by microprobe. Partition coefficients for plagioclase in andesitic to rhyolitic glasses range from 2 to 7, and increase as glass %SiO2 increases. Evolved Pleistocene rhyodacites (∼30–25,000 BP) and rhyodacites of the Holocene Llao Rock center (7015±45 BP) contain Sr-poor plagioclase and are derivatives from low-Sr magma. Rhyodacites of the Pleistocene Sharp Peak domes, Holocene Cleetwood flow (∼6850 BP), and climactic ejecta contain discrete Sr-rich and Sr-poor plagioclase phenocryst populations and are hybrids produced by mixing low-Sr rhyodacite (containing Sr-poor plag + opx + aug) with a more mafic high-Sr magma (with Sr-rich plag [ + hb?]). The data reinforce the conclusions of crystal-liquid mixing calculations (Bacon and Druitt 1988), and suggest some important refinements to the magma chamber model.


Journal of Volcanology and Geothermal Research | 1986

Lithic breccia and ignimbrite erupted during the collapse of Crater Lake Caldera, Oregon

Timothy H. Druitt; Charles R. Bacon

Abstract The climactic eruption of Mount Mazama (6845 y.B.P.) vented a total of ∼50 km3 of compositionally zoned rhyodacitic to basaltic magma from: (a) a single vent as a Plinian pumice fall deposit and the overlying Wineglass Welded Tuff, and (b) ring vents as ignimbrite and coignimbrite lithic breccia accompanying the collapse of Crater Lake caldera. New field and grain-size data for the ring-vent products are presented in this report. The coarse-grained, poorly bedded, clast-supported lithic breccia extends as far as 18 km from the caldera center. Like the associated ignimbrite, the breccia is compositionally zoned both radially and vertically, and silicic, mixed, and mafic types can be recognized, based on the proportion of rhyodacitic pumice. Matrix fractions in silicic breccias are depleted of fines and are lithic- and crystal-enriched relative to silicic ignimbrite due to vigorous gas sorting during emplacement. Ignimbrite occurs as a proximal veneer deposit overlying the breccia, a medial (∼ 8 to ∼ 25 km from the caldera center), compositionally zoned valley fill as much as > 110 m thick, and an unzoned distal (⪖ 20 km) facies which extends as far as 55 km from the caldera. Breccia within ∼ 9 km of the caldera center is interpreted as a coignimbrite lag breccia formed within the deflation zone of the collapsing ring-vent eruption columns. Expanded pyroclastic flows of the deflation zone were probably vertically graded in both size and concentration of blocks, as recently postulated for some turbidity currents. An inflection in the rate of falloff of lithic-clast size within the lithic breccia at ∼ 9 km may mark the outer edge of the deflation zone or may be an artifact of incomplete exposure. The onset of ring-vent activity at Mt. Mazama was accompanied by a marked increase in eruptive discharge. Pyroclastic flows were emplaced as a semicontinuous stream, as few ignimbrite flow-unit boundaries are evident. As eruption from the ring vents progressed, flow-runout distance and the extent of breccia deposition decreased due to (a) greater internal flow friction, and (b) decreasing eruption column heights. Effect (b) probably resulted from a progressive decrease in magmatic gas content and discharge rate. Waning discharge may have been promoted by the tapping of more viscous, crystal-rich magma, collapse of conduit walls, and declining caldera collapse rate.


Geology | 1982

Time-predictable bimodal volcanism in the Coso Range, California

Charles R. Bacon

A method and composition for treatment of acne vulgaris is provided wherein an aqueous solution of a water soluble fluoride and a surface active agent is applied to a skin area affected by acne.


Geophysical Research Letters | 2003

Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy

Anders Meibom; Morten Stage; Joseph L. Wooden; Brent R. Constantz; Robert B. Dunbar; Art B. Owen; Nancy S. Grumet; Charles R. Bacon; C. Page Chamberlain

In thermodynamic equilibrium with sea water the Sr/Ca ratio of aragonite varies predictably with temperature and the Sr/Ca ratio in coral have thus become a frequently used proxy for past Sea Surface Temperature (SST). However, biological effects can offset the Sr/Ca ratio from its equilibrium value. We report high spatial resolution ion microprobe analyses of well defined skeletal elements in the reef-building coral Porites lutea that reveal distinct monthly oscillations in the Sr/Ca ratio, with an amplitude in excess of ten percent. The extreme Sr/Ca variations, which we propose result from metabolic changes synchronous with the lunar cycle, introduce variability in Sr/Ca measurements based on conventional sampling techniques well beyond the analytical precision. These variations can limit the accuracy of Sr/Ca paleothermometry by conventional sampling techniques to about 2degreesC. Our results may help explain the notorious difficulties involved in obtaining an accurate and consistent calibration of the Sr/Ca vs. SST relationship.

Collaboration


Dive into the Charles R. Bacon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie M. Donnelly-Nolan

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Michael A. Clynne

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert L. Christiansen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Wendell A. Duffield

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

D. R. Sherrod

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Joel E. Robinson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Thomas W. Sisson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Nye

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

David W. Ramsey

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge