Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles R. Maliszewski is active.

Publication


Featured researches published by Charles R. Maliszewski.


Journal of Immunology | 2004

A Toll-Like Receptor 2 Ligand Stimulates Th2 Responses In Vivo, via Induction of Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase and c-Fos in Dendritic Cells

Stephanie M. Dillon; Anshu Agrawal; Thomas E. Van Dyke; Gary E. Landreth; Laurie K. McCauley; Amy J. Koh; Charles R. Maliszewski; Shizuo Akira; Bali Pulendran

The adaptive immune system can generate distinct classes of responses, but the mechanisms that determine this are poorly understood. In this study, we demonstrate that different Toll-like receptor (TLR) ligands induce distinct dendritic cell (DC) activation and immune responses in vivo. Thus, Escherichia coli LPS (TLR-4 stimulus), activates DCs to produce abundant IL-12(p70), but little IL-10, and stimulates Th1 and Tc1 responses. In contrast, Pam-3-cys (TLR-2 stimulus) elicits less IL-12(p70), but abundant IL-10, and favors Th2 and T cytotoxic 2 (Tc2) responses. These distinct responses likely occur via differences in extracellular signal-regulated kinase signaling in DCs. Thus, Pam-3-cys induces enhanced extracellular signal-regulated kinase signaling, compared with LPS, resulting in suppressed IL-12(p70) and enhanced IL-10 production, as well as enhanced induction of the transcription factor, c-Fos. Interestingly, DCs from c-fos−/− mice produce more IL-12(p70), but less IL-10, compared with control DCs. Therefore, different TLR ligands induce distinct cytokines and signaling in DCs, and differentially bias Th responses in vivo.


Journal of Immunology | 2000

Flt3-Ligand and Granulocyte Colony-Stimulating Factor Mobilize Distinct Human Dendritic Cell Subsets In Vivo

Bali Pulendran; Jacques Banchereau; Susan Burkeholder; Elizabeth Kraus; Elisabeth Guinet; Cecile Chalouni; Dania Caron; Charles R. Maliszewski; Jean Davoust; Joseph W. Fay; Karolina Palucka

Dendritic cells (DCs) have a unique ability to stimulate naive T cells. Recent evidence suggests that distinct DC subsets direct different classes of immune responses in vitro and in vivo. In humans, the monocyte-derived CD11c+ DCs induce T cells to produce Th1 cytokines in vitro, whereas the CD11c− plasmacytoid T cell-derived DCs elicit the production of Th2 cytokines. In this paper we report that administration of either Flt3-ligand (FL) or G-CSF to healthy human volunteers dramatically increases distinct DC subsets, or DC precursors, in the blood. FL increases both the CD11c+ DC subset (48-fold) and the CD11c− IL-3R+ DC precursors (13-fold). In contrast, G-CSF only increases the CD11c− precursors (>7-fold). Freshly sorted CD11c+ but not CD11c− cells stimulate CD4+ T cells in an allogeneic MLR, whereas only the CD11c− cells can be induced to secrete high levels of IFN-α, in response to influenza virus. CD11c+ and CD11c− cells can mature in vitro with GM-CSF + TNF-α or with IL-3 + CD40 ligand, respectively. These two subsets up-regulate MHC class II costimulatory molecules as well as the DC maturation marker DC-lysosome-associated membrane protein, and they stimulate naive, allogeneic CD4+ T cells efficiently. These two DC subsets elicit distinct cytokine profiles in CD4+ T cells, with the CD11c− subset inducing higher levels of the Th2 cytokine IL-10. The differential mobilization of distinct DC subsets or DC precursors by in vivo administration of FL and G-CSF offers a novel strategy to manipulate immune responses in humans.


Journal of Clinical Investigation | 1997

The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39.

Aaron J. Marcus; M. J. Broekman; Joan H.F. Drosopoulos; Naziba Islam; T. N. Alyonycheva; L. B. Safier; Katherine A. Hajjar; D. N. Posnett; M. A. Schoenborn; K. A. Schooley; R. B. Gayle; Charles R. Maliszewski

We previously demonstrated that when platelets are in motion and in proximity to endothelial cells, they become unresponsive to agonists (Marcus, A.J., L.B. Safier, K.A. Hajjar, H.L. Ullman, N. Islam, M.J. Broekman, and A.M. Eiroa. 1991. J. Clin. Invest. 88:1690-1696). This inhibition is due to an ecto-ADPase on the surface of endothelial cells which metabolizes ADP released from activated platelets, resulting in blockade of the aggregation response. Human umbilical vein endothelial cells (HUVEC) ADPase was biochemically classified as an E-type ATP-diphosphohydrolase. The endothelial ecto-ADPase is herein identified as CD39, a molecule originally characterized as a lymphoid surface antigen. All HUVEC ecto-ADPase activity was immunoprecipitated by monoclonal antibodies to CD39. Surface localization of HUVEC CD39 was established by confocal microscopy and flow cytometric analyses. Transfection of COS cells with human CD39 resulted in both ecto-ADPase activity as well as surface expression of CD39. PCR analyses of cDNA obtained from HUVEC mRNA and recombinant human CD39 revealed products of the same size, and of identical sequence. Northern blot analyses demonstrated that HUVEC express the same sized transcripts for CD39 as MP-1 cells (from which CD39 was originally cloned). We established the role of CD39 as a prime endothelial thromboregulator by demonstrating that CD39-transfected COS cells acquired the ability to inhibit ADP-induced aggregation in platelet-rich plasma. The identification of HUVEC ADPase/CD39 as a constitutively expressed potent inhibitor of platelet reactivity offers new prospects for antithrombotic therapeusis.


Trends in Immunology | 2001

Modulating the immune response with dendritic cells and their growth factors

Bali Pulendran; Jacques Banchereau; Eugene Maraskovsky; Charles R. Maliszewski

Different subsets of dendritic cells (DCs) appear to play a role in determining the specific cytokines secreted by T helper (Th) cells. A model is proposed that links together factors such as the pathogen, microenvironment, DCs and T cells in a mechanism that results in a flexible determination of T-cell polarization.


The American Journal of Surgical Pathology | 2002

'Agranular CD4+ CD56+ hematodermic neoplasm' (blastic NK-cell lymphoma) originates from a population of CD56+ precursor cells related to plasmacytoid monocytes

Tony Petrella; Michael R. Comeau; Marc Maynadié; Gérard Couillault; Anne de Muret; Charles R. Maliszewski; Sophie Dalac; Anne Durlach; Laurent J. Galibert

In 1999, we reported seven cases of an unusual hematologic malignancy with primary cutaneous presentation that appeared as a distinct clinicopathologic entity characterized by medium-sized tumor cells with a peculiar CD3− CD4+ CD56+ CD43+ HLA-DR+ cell surface phenotype. Because the origin of tumor cells was not clear and they exhibited a nonlineage-specific phenotype, we hypothesized that such tumors likely originated from hematologic–myeloid precursor cells and were tentatively assigned the designation “agranular CD4+ CD56+ hematodermic neoplasms.” In the present study we report 14 cases (seven already reported and seven additional cases) of these tumors, and simultaneously we present now a rare population of cells that we have identified in the peripheral blood of healthy volunteers treated with Flt3 ligand. These cells express all the characteristic markers of CD4+ CD56+ hematodermic neoplasms. This population appears to be related to plasmacytoid monocytes because they also expressed CD68 and bright levels of CD123. To confirm the relationship between these normal cells and CD4+ CD56+ hematodermic neoplasms, we conducted an extensive comparative phenotypic study. Results show that these two cell types are indeed related because they share many phenotypic features, including the presence of CD4, CD56, CD43, CD68, and HLA-DR and the absence of other T, B, NK, or myelomonocytic markers. More importantly, we found that the bright expression of CD123 by immunohistochemistry is a distinctive characteristic of CD4+ CD56+ hematodermic neoplasms because all (n = 14) cases expressed this marker, whereas only two specimens in a control panel comprising 30 samples of related tumors expressed comparable levels of CD123. We therefore propose that oncogenic transformation of NCAM-expressing plasmacytoid monocyte-like cells may lead to “agranular CD4+ CD56+ hematodermic neoplasm.”


Journal of Immunology | 2002

Murine Plasmacytoid Pre-Dendritic Cells Generated from Flt3 Ligand-Supplemented Bone Marrow Cultures Are Immature APCs

Pierre Brawand; David R. Fitzpatrick; Brad W. Greenfield; Kenneth Brasel; Charles R. Maliszewski; Thibaut De Smedt

The putative counterparts of human plasmacytoid pre-dendritic cells (pDCs) have been described in vivo in mouse models and very recently in an in vitro culture system. In this study, we report that large numbers of bone marrow-derived murine CD11c+B220+ pDCs can be generated with Flt3 ligand (FL) as the sole exogenous differentiation/growth factor and that pDC generation is regulated in vivo by FL because FL-deficient mice showed a major reduction in splenic pDC numbers. We extensively analyzed bone marrow-derived CD11c+B220+ pDCs and described their immature APC phenotype based on MHC class II, activation markers, and chemokine receptor level of expression. CD11c+B220+ pDCs showed a nonoverlapping Toll-like receptor pattern of expression distinct from that of classical CD11c+B220− dendritic cells and were poor T cell stimulators. Stimulation of CD11c+B220+ pDCs with oligodeoxynucleotides containing certain CpG motifs plus CD40 ligand plus GM-CSF led to increased MHC class II, CD80, CD86, and CD8α expression levels, to a switch in chemokine receptor expression that affected their migration, to IFN-α and IL-12 secretion, and to the acquisition of priming capacities for both CD4+ and CD8+ OVA-specific TCR-transgenic naive T cells. Thus, the in vitro generation of murine pDCs may serve as a useful tool to further investigate pDC biology as well as the potential role of these cells in viral immunity and other settings.


Journal of Immunology | 2000

Polyethylene Glycol-Modified GM-CSF Expands CD11b high CD11c high But Not CD11b low CD11c high Murine Dendritic Cells In Vivo: A Comparative Analysis with Flt3 Ligand

Elizabeth Daro; Bali Pulendran; Kenneth Brasel; Mark Teepe; Dean K. Pettit; David H. Lynch; David Vremec; Lorraine Robb; Ken Shortman; Hilary J. McKenna; Charles R. Maliszewski; Eugene Maraskovsky

Dendritic cells (DC) are potent APCs that can be characterized in the murine spleen as CD11bhighCD11chigh or CD11blowCD11chigh. Daily injection of mice of Flt3 ligand (FL) into mice transiently expands both subsets of DC in vivo, but the effect of administration of GM-CSF on the expansion of DC in vivo is not well defined. To gain further insight into the role of GM-CSF in DC development and function in vivo, we treated mice with polyethylene glycol-modified GM-CSF (pGM-CSF) which has an increased half-life in vivo. Administration of pGM-CSF to mice for 5 days led to a 5- to 10-fold expansion of CD11bhighCD11chigh but not CD11blowCD11chigh DC. DC from pGM-CSF-treated mice captured and processed Ag more efficiently than DC from FL-treated mice. Although both FL- and pGM-CSF-generated CD11bhighCD11chigh DC were CD8α−, a greater proportion of these DC from pGM-CSF-treated mice were 33D1+ than from FL-treated mice. CD11blowCD11chigh DC from FL-treated mice expressed high levels of intracellular MHC class II. DC from both pGM-CSF- and FL-treated mice expressed high levels of surface class II, low levels of the costimulatory molecules CD40, CD80, and CD86 and were equally efficient at stimulating allogeneic and Ag-specific T cell proliferation in vitro. The data demonstrate that treatment with pGM-CSF in vivo preferentially expands CD11bhighCD11chigh DC that share phenotypic and functional characteristics with FL-generated CD11bhighCD11chigh DC but can be distinguished from FL-generated DC on the basis of Ag capture and surface expression of 33D1.


Journal of Clinical Investigation | 1998

Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39.

rd R B Gayle; Charles R. Maliszewski; S D Gimpel; M. A. Schoenborn; R G Caspary; C Richards; K Brasel; Virginia L. Price; Joan H.F. Drosopoulos; Naziba Islam; T. N. Alyonycheva; M. J. Broekman; Aaron J. Marcus

Excessive platelet accumulation and recruitment, leading to vessel occlusion at sites of vascular injury, present major therapeutic challenges in cardiovascular medicine. Endothelial cell CD39, an ecto-enzyme with ADPase and ATPase activities, rapidly metabolizes ATP and ADP released from activated platelets, thereby abolishing recruitment. Therefore, a soluble form of CD39, retaining nucleotidase activities, would constitute a novel antithrombotic agent. We designed a recombinant, soluble form of human CD39, and isolated it from conditioned media from transiently transfected COS-1 cells and from stably transfected Chinese hamster ovary (CHO) cells. Conditioned medium from CHO cells grown under serum-free conditions was subjected to anti-CD39 immunoaffinity column chromatography, yielding a single approximately 66-kD protein with ATPase and ADPase activities. Purified soluble CD39 blocked ADP-induced platelet aggregation in vitro, and inhibited collagen-induced platelet reactivity. Kinetic analyses indicated that, while soluble CD39 had a Km for ADP of 5.9 microM and for ATP of 2.1 microM, the specificity constant kcat/Km was the same for both substrates. Intravenously administered soluble CD39 remained active in mice for an extended period of time, with an elimination phase half-life of almost 2 d. The data indicate that soluble CD39 is a potential therapeutic agent for inhibition of platelet-mediated thrombotic diatheses.


Journal of Clinical Investigation | 2002

Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain.

David J. Pinsky; M. Johan Broekman; Jacques J. Peschon; Kim L. Stocking; Tomoyuki Fujita; Ravichandran Ramasamy; E. Sander Connolly; Judy Huang; Szilard Kiss; Yuan Zhang; Tanvir F. Choudhri; Ryan A McTaggart; Hui Liao; Joan H.F. Drosopoulos; Virginia L. Price; Aaron J. Marcus; Charles R. Maliszewski

Endothelial CD39 metabolizes ADP released from activated platelets. Recombinant soluble human CD39 (solCD39) potently inhibited ex vivo platelet aggregation in response to ADP and reduced cerebral infarct volumes in mice following transient middle cerebral artery occlusion, even when given 3 hours after stroke. Postischemic platelet and fibrin deposition were decreased and perfusion increased without increasing intracerebral hemorrhage. In contrast, aspirin did not increase postischemic blood flow or reduce infarction volume, but did increase intracerebral hemorrhage. Mice lacking the enzymatically active extracellular portion of the CD39 molecule were generated by replacement of exons 4-6 (apyrase-conserved regions 2-4) with a PGKneo cassette. Although CD39 mRNA 3 of the neomycin cassette insertion site was detected, brains from these mice lacked both apyrase activity and CD39 immunoreactivity. Although their baseline phenotype, hematological profiles, and bleeding times were normal, cd39(-/-) mice exhibited increased cerebral infarct volumes and reduced postischemic perfusion. solCD39 reconstituted these mice, restoring postischemic cerebral perfusion and rescuing them from cerebral injury. These data demonstrate that CD39 exerts a protective thromboregulatory function in stroke.


Journal of Immunology | 2000

Soluble IL-4 Receptor Inhibits Airway Inflammation Following Allergen Challenge in a Mouse Model of Asthma

William R. Henderson; Emil Y. Chi; Charles R. Maliszewski

In vitro and in vivo studies, in both animal models and human asthmatics, have implicated IL-4 as an important inflammatory mediator in asthma. In a murine asthma model, we examined the anti-inflammatory activities of soluble IL-4R (sIL-4R). In this model, mice sensitized to OVA by i.p. and intranasal (i.n.) routes are challenged with the allergen by i.n. administration. The OVA challenge elicits an eosinophil infiltration into the lungs, with widespread mucus occlusion of the airways, and results in bronchial hyperreactivity. sIL-4R (0.1–100 μg) was administered by either i.n. or i.p. routes before OVA challenge in OVA-sensitized mice. Both blood and bronchoalveolar lavage fluid levels of sIL-4R were significantly elevated compared with controls by i.n. delivery of 100 μg sIL-4R; i.p. delivery of 100 μg sIL-4R only raised blood levels of sIL-4R. The i.n. administration of 100 μg sIL-4R before allergen challenge significantly reduced late phase pulmonary inflammation, blocking airway eosinophil infiltration, VCAM-1 expression, and mucus hypersecretion. In contrast, i.p. delivery of 100 μg sIL-4R inhibited only the influx of eosinophils into the lungs, but not airway mucus release. Furthermore, sIL-4R treatment by either i.n. or i.p. routes did not reduce airway hyperreactivity in response to methacholine challenge. Thus, elevating airway levels of sIL-4R through the administration of exogenous sIL-4R is effective in blocking the late phase pulmonary inflammation that occurs in this murine allergen-challenge asthma model. These results suggest that sIL-4R may have beneficial anti-inflammatory effects in asthmatic patients.

Collaboration


Dive into the Charles R. Maliszewski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F D Finkelman

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge