Charles S. Eyer
Louisiana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles S. Eyer.
Archives of Biochemistry and Biophysics | 1992
Charles S. Eyer; Wayne L. Backes
Substrate has recently been shown to affect (a) the high spin content of cytochrome P450 (b) the rate of first electron transfer when LM2 (P450 2B4) and reductase were in a preformed complex, and (c) the rate of functional complex formation between NADPH-cytochrome P450 reductase and cytochrome P450 LM2. When comparing the effect of substrate on each of these parameters, the strongest correlation was demonstrated between the rate of first electron transfer through the preformed complex and the rate of functional complex formation (W.L. Backes and C.S. Eyer, 1989, J. Biol. Chem. 264, 6252-6259). The relationship among high spin content, reduction rate, and the rate of functional complex formation was examined using a number of different cytochrome P450 isozymes. The goal of this study was to determine if the previously established relationship between reduction rate and the rate of reductase-P450 complex formation was a feature only of LM2, or a general characteristic of the cytochrome P450 system. Substrate addition caused an increase in first electron transfer for each of the isozymes examined, with high spin content being increased with cytochromes P450 2B1 (PBRLM5) and P450 2B2 (PBRLM6). Substrate addition to cytochrome P450 2C6 (PBRLM4) resulted in a small decrease in high spin content. P450 2B1 and P450 2B2 showed a positive correlation between substrate-mediated stimulation of reduction and high spin content, whereas P450 2C6 showed a negative correlation between these variables. Substrate also increased the rate of reductase-P450 association for each of the isozymes examined. When compared to the degree of stimulation of reduction through a preformed complex, a strong positive correlation was obtained with each isozyme examined. These results demonstrate that the increase in both the rate of functional reductase-P450 complex formation and the rate of first electron transfer is not simply a property of LM2, but appears to be a general characteristic of many cytochrome P450 isozymes.
Biochemical Pharmacology | 1992
David J. Sequeira; Charles S. Eyer; George F. Cawley; Todd G. Nick; Wayne L. Backes
Male and female Holtzman rats were exposed to ethylbenzene, and the effect on liver microsomal activities was studied. Hydrocarbon- and sex-dependent effects on P450-dependent metabolism of drugs and aromatic hydrocarbons were investigated. Hydrocarbon treatment produced two patterns of induction in cytochrome P450-dependent activities: (1) induction common to both sexes; and (2) induction exclusively in females. Benzphetamine N-demethylation, 7-ethoxycoumarin O-deethylation, p-nitroanisole O-demethylation and aromatic hydroxylation of toluene were induced in both sexes after rats were exposed to ethylbenzene. The rate of benzphetamine N-demethylation increased 4-fold in females and nearly doubled in males. The increase in O-deethylation of 7-ethoxycoumarin was 3-fold in females and doubled in males, while p-nitroanisole O-demethylation increased 4-fold in both sexes after exposure to ethylbenzene. Ethylbenzene had its greatest effect upon the formation of aromatic hydroxylated metabolites of toluene. Ethylbenzene exposure increased the rate of o-cresol formation by 4- and 9-fold in female and male rats, respectively. The formation rate of p-cresol was undetectable in either sex prior to hydrocarbon exposure; however, after the rats were given ethylbenzene, rates increased to 0.4 nmol/min/mg protein in females and to 0.9 nmol/min/mg protein in the males. Ethylbenzene exposure selectively induced aminopyrine demethylation, aniline hydroxylation, N,N-dimethylnitrosamine N-demethylation (DMNA) and aliphatic hydroxylation of toluene in females. Rates for aminopyrine, aniline, and DMNA were increased 50% over controls, while formation of benzyl alcohol from toluene was enhanced to 260% of control. Western immunoblotting indicated that ethylbenzene treatment induced cytochrome P450 2B1/2B2 to a greater extent in male rats and cytochrome P450 2E1 only in females. Ethylbenzene exposure did not affect significantly the level of cytochrome P450 1A1.
Xenobiotica | 1993
Wayne L. Backes; D. J. Sequeira; George F. Cawley; Charles S. Eyer
1. Treatment of male rat with the small aromatic hydrocarbons, benzene, toluene, ethylbenzene, n-propylbenzene, m-xylene, and p-xylene increased several P450-dependent activities, with ethylbenzene, m-xylene, and n-propylbenzene producing the greatest response. Hydrocarbon treatment differentially affected toluene metabolism, producing a response dependent on the metabolite monitored. In untreated rats, benzyl alcohol was the major hydroxylation product of toluene metabolism, comprising > 99% of the total metabolites formed. Hydrocarbon treatment increased the overall rate of toluene metabolism by dramatically increasing the amount of aromatic hydroxylation. Ethylbenzene, n-propylbenzene and m-xylene were the most effective inducers of aromatic hydroxylation of toluene. In contrast, production of the major toluene metabolite benzyl alcohol was increased only after treatment with m-xylene. 2. P450 2B1/2B2 levels were induced by each of the hydrocarbons examined, with the magnitude of induction increasing with increasing hydrocarbon size. P450 1A1 was also induced after hydrocarbon exposure; however, the degree of induction was smaller than that observed for P450 2B1/2B2. P450 2C11 levels were suppressed after treatment with benzene, ethylbenzene and n-propylbenzene. 3. Taken together these results display two induction patterns. The first generally corresponds to changes in the P450 2B subfamily, where activities (e.g. the aromatic hydroxylations of toluene) were most effectively induced by ethylbenzene, n-propylbenzene and m-xylene. In the second, induction was observed only after m-xylene treatment, a pattern that was found when the metabolism of the substrate was catalysed by both the P450 2B subfamily and P450 2C11. Hydrocarbons that both induced P450 2B1/2B2 and suppressed P450 2C11 (such as ethylbenzene and n-propylbenzene) showed little change in activities catalysed by both isozymes (e.g. aliphatic hydroxylation of toluene, and aniline hydroxylation); however, m-xylene treatment led to elevated P450 2B1/2B2 levels without significantly suppressing P450 2C11. m-Xylene produced significant increases in activities efficiently catalysed by both isozymes. Therefore, the unique induction pattern observed after m-xylene treatment can be accounted for by induction of P450 2B1/2B2 without concomitant suppression of P450 2C11.
Biochimica et Biophysica Acta | 1994
David J. Sequeira; George F. Cawley; Charles S. Eyer; Wayne L. Backes
The goal of this study was to examine the effect of duration of ethylbenzene exposure on cytochrome P-450-dependent activities. Male rats were treated with ethylbenzene by intraperitoneal injection for either 1 or 3 days, and microsomal preparations were examined for changes in the microsomal proteins and activities as well as the expression of specific P-450 isozymes. Two general patterns of induction were evident when different P-450-dependent activities were examined. (i) Cytochrome P-450 2B-dependent activities (e.g., p-nitroanisole demethylation, benzphetamine demethylation, and aromatic toluene hydroxylations) were induced both after 1 and 3 days of ethylbenzene exposure. (ii) Cytochrome P-450 2E1-dependent activities (e.g., N,N-dimethylnitrosamine demethylation and aniline hydroxylation) were induced after treatment with ethylbenzene for one day; however, after 3 days of ethylbenzene treatment these activities returned to control levels. Changes in these activities were consistent with changes in the levels of specific P-450 isozymes as determined by immunoblotting. Cytochrome P-450 2B levels were increased and P-450 2C11 levels were suppressed at both 1 and 3 days of ethylbenzene exposure. A temporal response in P-450 2E1 expression was observed, with P-450 2E1 levels increasing after a single ethylbenzene injection and returning to controls after administration of the hydrocarbon for 3 days. Rats were also subjected to a pair-feeding regimen to determine whether these effects were related to altered dietary status in ethylbenzene-treated rats. Neither P-450-dependent activities nor immunoreactive protein levels were altered in pair-fed rats. These results demonstrate that prolonging the duration of hydrocarbon exposure can produce differential effects on the expression of P-450 2E1, with levels being elevated after acute hydrocarbon administration, but not after more prolonged hydrocarbon exposure.
Biochimica et Biophysica Acta | 1997
Wei Yuan; Sonia C. Serron; Monica M Haddican; George F. Cawley; Charles S. Eyer; Wayne L. Backes
Ethylbenzene (EB) treatment to male Holtzman rats was shown to alter the expression of cytochrome P-450s 1A1, 2B, 2C11, 2E1, and 3A, with several isozymes exhibiting complex multiphasic induction patterns when treated for 1 and 3 days with the alkylbenzene. Male rats were treated with daily i.p. injections of EB for either one or three days, and the effects on P-450 dependent activities, P-450 immunoreactive protein levels and their corresponding mRNA levels were measured. Although levels of P-450 2B, 2C11, 2E1, and 3A were all modulated by EB treatment, each exhibited different temporal characteristics. P-450 2B1/2B2 were induced after a single EB exposure and continued to be elevated after EB treatment for 3 days. However, P-450 2B1 and 2B2 mRNA levels were elevated about 50-fold after a single injection, and returned to control values after continued EB administration. P-450 2C11 expression was decreased to about 45% of controls after either single or repeated EB exposure with corresponding changes being observed in the levels of 2C11 mRNA. P-450 2E1 was induced by EB according to a complex multistep induction pattern. Both P-450 2E1 protein and RNA levels were increased 2-4-fold after a single EB treatment but returned to control values after continued administration. P-450 3A-dependent testosterone 2beta-hydroxylation and P-450 3A immunoreactive protein levels were both increased about 3-fold after a single EB treatment, whereas levels were only elevated 2-fold after EB treatment for 3 days. In contrast, P-450 3A2 mRNA was unaffected by a single EB injection but was increased 3.5-fold with repeated administration. Changes in P-450 3A1/2 were similar to those observed with P-450 3A2, whereas changes in P-450 3A1/23 and 3A23 mRNAs were not detectable. These data indicate that while EB can influence the expression of several P-450 isozymes, the hydrocarbon appears to alter P-450 expression by acting at different regulatory steps.
Journal of Biological Chemistry | 1989
Wayne L. Backes; Charles S. Eyer
Molecular Pharmacology | 1990
K.M. Causey; Charles S. Eyer; Wayne L. Backes
Archives of Biochemistry and Biophysics | 1997
Wei Yuan; David J. Sequeira; George F. Cawley; Charles S. Eyer; Wayne L. Backes
Archives of Biochemistry and Biophysics | 1993
Wayne L. Backes; George F. Cawley; Charles S. Eyer; M. Means; K.M. Causey; W.J. Canady
Biochemical and Biophysical Research Communications | 1994
W. Yuan; George F. Cawley; Charles S. Eyer; Wayne L. Backes