Charles S. Wong
University of Winnipeg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles S. Wong.
Environmental Science & Technology | 1995
Charles S. Wong; Gordon Sanders; Daniel R. Engstrom; David T. Long; Deborah L. Swackhamer; Steven J. Eisenreich
Five sediment cores were taken in 1990-1991 from the sedimentation basins of Lake Ontario and analyzed for the radionuclide 210 Pb and hydrophobic organic compounds (HOCs) in order to determine the accumulation, inventory, and diagenesis of these HOCs in the sediments. Two of these sites were sampled earlier in 1981, allowing the study of diagenetic processes affecting these HOCs over a decade-long interval. The shape and details of HOC sediment profiles agreed with the HOC production and usage history, despite evidence of bioturbation in the cores. The 210 Pb chronology showed a mixed depth of 2-5 cm, but mixing by deposit-feeding oligochaetes and benthic organisms was insufficient to homogenize the sediment over the time scale of HOC inputs. Recent HOC accumulation rates and inventories showed significant variability among cores, which was removed when corrected for 210 Pb-based sediment focusing. This suggests that particle-reactive compounds like HOCs are mixed and distributed evenly throughout the lake basins and that site-specific differences are due to differing amounts of sediment delivered via focusing of sediment to depositional basins. Comparison of 1981 and 1990 sediment cores showed expected downcore movement of HOC profiles due to 9 yr of accumulated sediment mass with effectively no loss or gain in mass.
Environmental Science & Technology | 2012
Liang-Ying Liu; Ji-Zhong Wang; Gao-Ling Wei; Yu-Feng Guan; Charles S. Wong; Eddy Y. Zeng
Sources, compositions, and historical records of polycyclic aromatic hydrocarbons (PAHs) in sediment cores collected from the Yellow Sea and the South China Sea were analyzed to investigate the influence of anthropogenic activities. The occurrence of PAHs was mainly derived from various combustion sources, especially the combustion of biomass and domestic coal. Uniform composition of sedimentary PAHs (52-62% of phenanthrene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, and benzo[g,h,i]perylene) suggested air-borne mixtures intractable to degradation. The concentrations of the sum of 15 PAHs (16 priority pollutants designed by the United States Environmental Protection Agency minus naphthalene; designed as Σ(15)PAH) in Yellow Sea sediment cores were generally higher than those in the South China Sea. The profiles of Σ(15)PAH concentrations recorded in the sediment cores closely followed historical socioeconomic development in China. In general, Σ(15)PAH concentrations started to increase from the background pollution level posed by agricultural economy at the turn of 20th century. In addition, a Σ(15)PAH concentration reduction was observed during the Chinese Civil War (1946-1949) and Great Cultural Revolution (1966-1976), suggesting them as setbacks for economic development in Chinese history. Increasing PAH emissions as a result of increasing coal combustion associated with the rapid urbanization and industrialization since the implementation of the Reform and Open Policy (since 1978) accounted for the fast growth of Σ(15)PAH concentrations in sediment cores. The decline of Σ(15)PAH concentrations from subsurface maximum until sampling time was inconsistent with current-day economic development in China, and may possibly suggest emission reductions due to decreasing proportional use of domestic coal and increasing consumption of cleaner energies (natural gas and liquefied petroleum gas).
Environmental Science & Technology | 2010
Hans-Joachim Lehmler; Stuart Harrad; Heinrich Hühnerfuss; Izabela Kania-Korwel; Cindy M. Lee; Zhe Lu; Charles S. Wong
Chirality can be exploited to gain insight into enantioselective fate processes that may otherwise remain undetected because only biological, but not physical and chemical transport and transformation processes in an achiral environment will change enantiomer compositions. This review provides an in-depth overview of the application of chirality to the study of chiral polychlorinated biphenyls (PCBs), an important group of legacy pollutants. Like other chiral compounds, individual PCB enantiomers may interact enantioselectively (or enantiospecifically) with chiral macromolecules, such as cytochrome P-450 enzymes or ryanodine receptors, leading to differences in their toxicological effects and the enantioselective formation of chiral biotransformation products. Species and congener-specific enantiomer enrichment has been demonstrated in environmental compartments, wildlife, and mammals, including humans, typically due to a complex combination of biotransformation processes and uptake via the diet by passive diffusion. Changes in the enantiomer composition of chiral PCBs in the environment have been used to understand complex aerobic and anaerobic microbial transformation pathways, to delineate and quantify PCB sources and transport in the environment, to gain insight into the biotransformation of PCBs in aquatic food webs, and to investigate the enantioselective disposition of PCBs and their methylsulfonyl PCBs metabolites in rodents. Overall, changes in chiral signatures are powerful, but currently underutilized tools for studies of environmental and biological processes of PCBs.
Science of The Total Environment | 2013
Jules C. Carlson; Julie C. Anderson; Jennifer E. Low; Pascal Cardinal; Scott Mackenzie; Sarah A. Beattie; Renee J. Bennett; Stephanie S. Meronek; Rebecca P.A. Wilks; William M. Buhay; Charles S. Wong; Mark L. Hanson
Nutrient enrichment and loadings of pharmaceuticals and agrochemicals into freshwater systems are common concerns, especially for water bodies receiving wastewater inputs. In the rural communities of Morden and Winkler of Manitoba, Canada, sewage lagoons discharge their wastewater directly into Dead Horse Creek, a small tributary of the Red River that empties into Lake Winnipeg. This lagoon approach to managing rural wastewaters is common across the North American Prairies. Therefore, this study aimed to assess the hazards of lagoon treatment releases at this model site. This was done by characterizing the nutrients, organic micropollutants (i.e., pesticides, pharmaceuticals) and standard water quality parameters in the creek prior to and following lagoon discharge events over a number of years (2009-2011). Measured concentrations of nutrients were compared to regulatory expectations and micropollutants were assessed using hazard quotients. As expected, concentrations of nitrogen and phosphorus species were greatest in sites downstream of the sewage outfall immediately following discharge events. Pharmaceutical and agricultural chemicals were detected at concentrations between 0.5 and 90 ng/L. Detection frequencies and concentrations matched typical use patterns. Those compounds used predominately for human medicine were detected at downstream sites following discharge events, while those used in an agricultural setting were detected at relatively consistent levels over time at sites both upstream and downstream of the outfall location. Hazard quotients calculated for micropollutants of interest indicated minimal toxicological risk to aquatic biota in the creek, with only erythromycin and diazinon presenting a potential concern to aquatic algae and invertebrates. Concentrations of nutrients exceeded Canadian guideline thresholds during release, but returned to background levels once discharges ceased. Therefore, it is advisable that wastewater treatment and management strategies such as constructed wetlands and/or staggered releases be used in order to minimize the hazard posed by nutrient pulses in Dead Horse Creek and other similar systems.
Environmental Science & Technology | 2012
Bao-Zhong Zhang; Kai Zhang; Shao-Meng Li; Charles S. Wong; Eddy Y. Zeng
Gaseous and size-segregated particulate PBDEs (specifically BDE-47, -99, -183, -207, and -209) in the air were measured in urban Guangzhou at 100 and 150 m above the ground in daytime and at night in August and December 2010, to assess dry deposition of these contaminants accurately with regards to influences of meteorological factors but without confounding surface effects. Particulate PBDEs were more abundant at night than in daytime, and slightly higher in winter than in summer, likely from varying meteorological conditions and atmospheric boundary layers. More than 60% of particulate-phase PBDEs was contained in particles with an aerodynamic diameter (D(p)) below 1.8 μm, indicating long-range transport potential. The average daily particle dry deposition fluxes of PBDEs in August ranged from 2.6 (BDE-47) to 88.6 (BDE-209) ng m(-2) d(-1), while those in winter ranged from 2.0 (BDE-47) to 122 (BDE-209) ng m(-2) d(-1). Deposition fluxes of all PBDE congeners were significantly higher in daytime than at night for both months, due to the effect of diurnal variability of meteorological factors. In addition, mean overall particle deposition velocities of individual BDE congeners ranged from 0.11 to 0.28 cm s(-1). These values were within a factor of 2 of assumed values previously used in southern China and the Laurentian Great Lakes, suggesting that such assumptions were reasonable for sites with similar particulate size distributions and PBDE sources. Dry deposition velocities of PBDEs were lower at night than those in the daytime, probably reflecting higher mechanical and thermal turbulence during daytime. Dry deposition of particulate-bound PBDEs is influenced by short-term temporal variability from meteorological factors, and also by particulate size fractions.
Environmental Science & Technology | 2012
Matthew S. Ross; Charles S. Wong; Jonathan W. Martin
Great variability exists in perfluorooctane sulfonate (PFOS) isomer patterns in human and wildlife samples, including unexpectedly high percentages (e.g., >40%) of branched isomers in human sera. Previous in vitro tests showed that branched PFOS-precursors were biotransformed faster than the corresponding linear isomer. Thus, high percentages of branched PFOS may be a biomarker of PFOS-precursor exposure in humans. We evaluated this hypothesis by examining the isomer-specific fate of perfluorooctane sulfonamide (PFOSA), a known PFOS-precursor, in male Sprague-Dawley rats exposed to commercial PFOSA via food for 77 days (83.0 ± 20.4 ng kg(-1) day(-1)), followed by 27 days of depuration. Elimination half-lives of the two major branched PFOSA isomers (2.5 ± 1.0 days and 3.7 ± 1.2 days) were quicker than for linear PFOSA (5.9 ± 4.6 days), resulting in a depletion of branched PFOSA isomers in blood and tissues relative to the dose. A corresponding increase in the total branched isomer content of PFOS, the ultimate metabolite, in rat serum was not observed. However, a significant enrichment of 5m-PFOS and a significant depletion of 1m-PFOS were observed, relative to authentic electrochemical PFOS. The data cannot be directly extrapolated to humans, due to known differences in the toxicokinetics of PFOS in rodents and humans. However, the results confirm that in vivo exposure to commercially relevant PFOS-precursors can result in a distinct PFOS isomer profile that may be useful as a biomarker of exposure source.
Chemistry Central Journal | 2013
Julie C. Anderson; Jules C. Carlson; Jennifer E. Low; Charles S. Wong; Charles W. Knapp; Mark L. Hanson
BackgroundThe discharge of complex mixtures of nutrients, organic micropollutants, and antibiotic resistance genes from treated municipal wastewater into freshwater systems are global concerns for human health and aquatic organisms. Antibiotic resistance genes (ARGs) are genes that have the ability to impart resistance to antibiotics and reduce the efficacy of antibiotics in the systems in which they are found. In the rural community of Grand Marais, Manitoba, Canada, wastewater is treated passively in a sewage lagoon prior to passage through a treatment wetland and subsequent release into surface waters. Using this facility as a model system for the Canadian Prairies, the two aims of this study were to assess: (a) the presence of nutrients, micropollutants (i.e., pesticides, pharmaceuticals), and ARGs in lagoon outputs, and (b) their potential removal by the treatment wetland prior to release to surface waters in 2012.ResultsAs expected, concentrations of nitrogen and phosphorus species were greatest in the lagoon and declined with movement through the wetland treatment system. Pharmaceutical and agricultural chemicals were detected at concentrations in the ng/L range. Concentrations of these compounds spiked downstream of the lagoon following discharge and attenuation was observed as the effluent migrated through the wetland system. Hazard quotients calculated for micropollutants of interest indicated minimal toxicological risk to aquatic biota, and results suggest that the wetland attenuated atrazine and carbamazepine significantly. There was no significant targeted removal of ARGs in the wetland and our data suggest that the bacterial population in this system may have genes imparting antibiotic resistance.ConclusionsThe results of this study indicate that while the treatment wetland may effectively attenuate excess nutrients and remove some micropollutants and bacteria, it does not specifically target ARGs for removal. Additional studies would be beneficial to determine whether upgrades to extend retention time or alter plant community structure within the wetland would optimize removal of micropollutants and ARGs to fully characterize the utility of these systems on the Canadian Prairies.
Environmental Science & Technology | 2012
Brian J. Asher; Yuan Wang; Amila O. De Silva; Sean Backus; Derek C. G. Muir; Charles S. Wong; Jonathan W. Martin
Exposure to perfluorooctane sulfonate (PFOS) may arise directly, from emission and exposure to PFOS itself, or indirectly via the environmental release and degradation of PFOS-precursors. Human serum enantiomer fractions (EFs) of 1m-PFOS have been shown to be nonracemic, suggesting that PFOS-precursors are a significant source of PFOS in humans, but little is known about the importance of PFOS-precursors in ecosystems. In the current work, concentrations of PFOS, perfluorooctane sulfonamide (PFOSA), PFOS isomer profiles, and EFs of 1m-PFOS were determined in Lake Ontario water, sediment, fishes and invertebrates. Concentrations of PFOS and PFOSA were highest in slimy sculpin and Diporeia, and concentrations of the two compounds were often correlated. 1m-PFOS was racemic in sediment, water, sculpin and rainbow smelt, but nonracemic in the top predator, lake trout, and all invertebrate species. Furthermore, EFs were correlated with the relative concentrations of PFOS and PFOSA in invertebrates. Overall, these empirical observations with a new analytical tool confirm previous suggestions that PFOS-precursors contribute to PFOS in the food web, likely via sediment. Implications are that future PFOS exposures in this ecosystem will be influenced by an in situ source, and that the apparent environmental behavior of PFOS (e.g., bioaccumulation potential) can be confounded by precursors.
Environmental Science & Technology | 2013
Zhe Lu; Izabela Kania-Korwel; Hans-Joachim Lehmler; Charles S. Wong
Changes in atropisomer composition of chiral polychlorinated biphenyls (PCBs) and their mono- and dihydroxylated metabolites (OH- and diOH-PCBs) via rat cytochrome P450 2B1 (CYP2B1) mediated biotransformation were investigated in vitro. Rat CYP2B1 could stereoselectively biotransform chiral PCBs to generate meta-OH-PCBs as the major metabolites after 60 min incubations. Nonracemic enantiomer fractions (EFs: concentration ratios of the (+)-atropisomer or the first-eluting atropisomer over the total concentrations of two atropisomers) of 5-OH-PCBs, were 0.17, 0.20, 0.85, 0.77, and 0.41 for incubations with PCBs 91, 95, 132, 136, and 149, respectively. CYP-mediated stereoselective formation of diOH-PCBs from OH-PCBs was observed for the first time. After 60 min stereoselective biotransformation, the EFs of both 4-OH-PCB 95 and 5-OH-PCB 95 changed from racemic (i.e., 0.50) to 0.62 and 0.46, respectively. These transformations generated statistically nonracemic 4,5-diOH-PCB 95, with EFs of 0.53 and 0.58 for 4-OH-PCB 95 and 5-OH-PCB 95 incubations, respectively. Biotransformation of PCBs 91 and 136 also generated 4,5-diOH-PCB 91 and 4,5-diOH-PCB 136, respectively. These in vitro results were consistent with that observed for stereoselective PCB biotransformation by rat liver microsomes and in vivo. Biotransformation interference between two atropisomers of PCB 136 was investigated for the first time in this study. The biotransformation process of (-)-PCB 136 was significantly disrupted by the presence of (+)-PCB 136 but not the other way around. Thus, stereoselective metabolism of chiral PCBs and OH-PCBs by CYPs is a major mechanism for atropisomer composition change of PCBs and their metabolites in the environment, with the degree of composition change dependent, at least in part, on stereoselective interference of atropisomers with each other at the enzyme level.
Science of The Total Environment | 2012
Kai Zhang; Bao-Zhong Zhang; Shao-Meng Li; Charles S. Wong; Eddy Y. Zeng
Polycyclic aromatic hydrocarbons (PAHs) associated with inhalable particles are harmful to human health, especially to people in urban indoor environments. To evaluate human respiratory exposure to indoor PAHs properly, respiratory deposition fluxes of size-fractioned PAHs were estimated based on size-segregated distribution of PAHs in indoor air of an urban community of Guangzhou, China. The concentrations of ∑(16)PAH (sum of the 16 priority PAHs designated by the United States Environmental Protection Agency) were 28.9±10.0 ng/m(3), with the mean benzo(a)pyrene equivalent (BaPE) concentration at 4.1±1.6 ng/m(3). Particle size distributions of both ∑(16)PAH and BaPE concentrations peaked in the 1.0-1.8 μm fraction. The mean respiratory deposition flux of ∑(16)PAH was 5.9 ng/h, and accumulation mode particles contributed 20.5-83.8% of the respiratory deposition fluxes for individual PAHs. In addition, 8.6-10.2% of inhaled ∑(16)PAH were calculated to be deposited in the alveoli region, with accumulation particles as the largest contributor. In particular, ultrafine particles contributed 0.4-21.7% of individual PAHs deposited in the alveoli region, more than twice the fraction of the PAHs in the ultrafine particles (0.2-8.5%). Finally, lifetime cancer risk via inhalation of indoor particulate PAHs may be greater than the cancer risk guideline value (10(-6)), depending on specific assumptions used in this risk assessment.