Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles Sfeir is active.

Publication


Featured researches published by Charles Sfeir.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Engineering gene expression and protein synthesis by modulation of nuclear shape

Carson H. Thomas; Joel H. Collier; Charles Sfeir; Kevin E. Healy

The current understanding of the relationships between cell shape, intracellular forces and signaling, nuclear shape and organization, and gene expression is in its infancy. Here we introduce a method for investigating gene-specific responses in individual cells with controlled nuclear shape and projected area. The shape of the nuclei of primary osteogenic cells were controlled on microfabricated substrata with regiospecific chemistry by confining attachment and spreading of isolated cells on adhesive islands. Gene expression and protein synthesis were altered by changing nuclear shape. Collagen I synthesis correlated directly with cell shape and nuclear shape index (NSI), where intermediate values of nuclear distension (6 < NSI < 8) promoted maximum synthesis. Osteocalcin mRNA, a bone-specific differentiation marker, was observed intracellularly by using reverse transcription in situ PCR at 4 days in cells constrained by the pattern and not detected in unconstrained cells of similar projected area, but different NSI. Our data supports the concept of gene expression and protein synthesis based on optimal distortion of the nucleus, possibly altering transcription factor affinity for DNA, transport to the nucleus, or nuclear matrix organization. The combination of microfabricated surfaces, reverse transcription in situ PCR, and NSI measurement is an excellent system to study how transcription factors, the nuclear matrix, and the cytoskeleton interact to control gene expression and may be useful for studying a wide variety of other cell shape/gene expression relationships.


Acta Biomaterialia | 2014

Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation

Sayuri Yoshizawa; Andy Brown; Aaron Barchowsky; Charles Sfeir

Magnesium alloys are being investigated for load-bearing bone fixation devices due to their initial mechanical strength, modulus similar to native bone, biocompatibility and ability to degrade in vivo. Previous studies have found Mg alloys to support bone regeneration in vivo, but the mechanisms have not been investigated in detail. In this study, we analyzed the effects of Mg(2+) stimulation on intracellular signaling mechanisms of human bone marrow stromal cells (hBMSCs). hBMSCs were cultured in medium containing 0.8, 5, 10, 20 and 100mM MgSO4, either with or without osteogenic induction factors. After 3weeks, mineralization of extracellular matrix (ECM) was analyzed by Alizarin red staining, and gene expression was analyzed by quantitative polymerase chain reaction array. Mineralization of ECM was enhanced at 5 and 10mM MgSO4, and collagen type X mRNA (COL10A1, an ECM protein deposited during bone healing) expression was increased at 10mM MgSO4 both with and without osteogenic factors. We also confirmed the increased production of collagen type X protein by Western blotting. Next, we investigated the mechanisms of intracellular signaling by analyzing the protein production of hypoxia-inducible factor (HIF)-1α and 2α (transcription factors of COL10A1), vascular endothelial growth factor (VEGF) (activated by HIF-2α) and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α (transcription coactivator of VEGF). We observed that 10mM MgSO4 stimulation enhanced COL10A1 and VEGF expression, possibly via HIF-2α in undifferentiated hBMSCs and via PGC-1α in osteogenic cells. These data suggest possible ECM proteins and transcription factors affected by Mg(2+) that are responsible for the enhanced bone regeneration observed around degradable Mg orthopedic/craniofacial devices.


Acta Biomaterialia | 2015

In vivo study of magnesium plate and screw degradation and bone fracture healing.

Amy Chaya; Sayuri Yoshizawa; Kostas Verdelis; Nicole T. Myers; Bernard J. Costello; Da-Tren Chou; Siladitya Pal; Spandan Maiti; Prashant N. Kumta; Charles Sfeir

Each year, millions of Americans suffer bone fractures, often requiring internal fixation. Current devices, like plates and screws, are made with permanent metals or resorbable polymers. Permanent metals provide strength and biocompatibility, but cause long-term complications and may require removal. Resorbable polymers reduce long-term complications, but are unsuitable for many load-bearing applications. To mitigate complications, degradable magnesium (Mg) alloys are being developed for craniofacial and orthopedic applications. Their combination of strength and degradation make them ideal for bone fixation. Previously, we conducted a pilot study comparing Mg and titanium devices with a rabbit ulna fracture model. We observed Mg device degradation, with uninhibited healing. Interestingly, we observed bone formation around degrading Mg, but not titanium, devices. These results highlighted the potential for these fixation devices. To better assess their efficacy, we conducted a more thorough study assessing 99.9% Mg devices in a similar rabbit ulna fracture model. Device degradation, fracture healing, and bone formation were evaluated using microcomputed tomography, histology and biomechanical tests. We observed device degradation throughout, and calculated a corrosion rate of 0.40±0.04mm/year after 8 weeks. In addition, we observed fracture healing by 8 weeks, and maturation after 16 weeks. In accordance with our pilot study, we observed bone formation surrounding Mg devices, with complete overgrowth by 16 weeks. Bend tests revealed no difference in flexural load of healed ulnae with Mg devices compared to intact ulnae. These data suggest that Mg devices provide stabilization to facilitate healing, while degrading and stimulating new bone formation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes

Andrew J. Glowacki; Sayuri Yoshizawa; Siddharth Jhunjhunwala; Andreia Espindola Vieira; Gustavo Pompermaier Garlet; Charles Sfeir; Steven R. Little

Significance Periodontal disease (gum disease) is an extremely prevalent inflammatory disease initiated by persistent bacterial insult, leading to the destruction of bone and gingival tissues. Current clinical treatments focus solely on the removal of bacteria. In this study, we put forth a strategy to address the underlying inflammatory imbalance in periodontal disease by harnessing the body’s own sophisticated immunoregulatory mechanisms through the recruitment of regulatory T cells (Tregs). This is accomplished by controllably releasing small quantities (nanogram/kilogram range) of chemokine recognized by Tregs using biodegradable, resorbable polymers with an excellent track record of regulatory approval. Administration of Treg-recruiting treatments to the gingiva of mice and canines reduces clinical scores of disease as well as hard and soft tissue destruction. The hallmark of periodontal disease is the progressive destruction of gingival soft tissue and alveolar bone, which is initiated by inflammation in response to an invasive and persistent bacterial insult. In recent years, it has become apparent that this tissue destruction is associated with a decrease in local regulatory processes, including a decrease of forkhead box P3-expressing regulatory lymphocytes. Accordingly, we developed a controlled release system capable of generating a steady release of a known chemoattractant for regulatory lymphocytes, C-C motif chemokine ligand 22 (CCL22), composed of a degradable polymer with a proven track record of clinical translation, poly(lactic-co-glycolic) acid. We have previously shown that this sustained presentation of CCL22 from a point source effectively recruits regulatory T cells (Tregs) to the site of injection. Following administration of the Treg-recruiting formulation to the gingivae in murine experimental periodontitis, we observed increases in hallmark Treg-associated anti-inflammatory molecules, a decrease of proinflammatory cytokines, and a marked reduction in alveolar bone resorption. Furthermore, application of the Treg-recruiting formulation (fabricated with human CCL22) in ligature-induced periodontitis in beagle dogs leads to reduced clinical measures of inflammation and less alveolar bone loss under severe inflammatory conditions in the presence of a diverse periodontopathogen milieu.


Biomacromolecules | 2011

Primary Structure and Phosphorylation of Dentin Matrix Protein 1 (DMP1) and Dentin Phosphophoryn (DPP) Uniquely Determine Their Role in Biomineralization

Atul S. Deshpande; Ping-An Fang; Xiaoyuan Zhang; Thottala Jayaraman; Charles Sfeir; Elia Beniash

The SIBLING (small integrin-binding ligand N-linked glycoproteins) family is the major group of noncollagenous proteins in bone and dentin. These extremely acidic and highly phosphorylated extracellular proteins play critical roles in the formation of collagenous mineralized tissues. Whereas the lack of individual SIBLINGs causes significant mineralization defects in vivo, none of them led to a complete cessation of mineralization suggesting that these proteins have overlapping functions. To assess whether different SIBLINGs regulate biomineralization in a similar manner and how phosphorylation impacts their activity, we studied the effects of two SIBLINGs, dentin matrix protein 1 (DMP1) and dentin phosphophoryn (DPP), on mineral morphology and organization in vitro. Our results demonstrate distinct differences in the effects of these proteins on mineralization. We show that phosphorylation has a profound effect on the regulation of mineralization by both proteins. Specifically, both phosphorylated proteins facilitated organized mineralization of collagen fibrils and phosphorylated DMP1-induced formation of organized mineral bundles in the absence of collagen. In summary, these results indicate that the primary structure and phosphorylation uniquely determine functions of individual SIBLINGs in regulation of mineral morphology and organization.


Philosophical Transactions of the Royal Society A | 2010

Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering

Hsu-Feng Ko; Charles Sfeir; Prashant N. Kumta

Recent developments in tissue engineering approaches frequently revolve around the use of three-dimensional scaffolds to function as the template for cellular activities to repair, rebuild and regenerate damaged or lost tissues. While there are several biomaterials to select as three-dimensional scaffolds, it is generally agreed that a biomaterial to be used in tissue engineering needs to possess certain material characteristics such as biocompatibility, suitable surface chemistry, interconnected porosity, desired mechanical properties and biodegradability. The use of naturally derived polymers as three-dimensional scaffolds has been gaining widespread attention owing to their favourable attributes of biocompatibility, low cost and ease of processing. This paper discusses the synthesis of various polysaccharide-based, naturally derived polymers, and the potential of using these biomaterials to serve as tissue engineering three-dimensional scaffolds is also evaluated. In this study, naturally derived polymers, specifically cellulose, chitosan, alginate and agarose, and their composites, are examined. Single-component scaffolds of plain cellulose, plain chitosan and plain alginate as well as composite scaffolds of cellulose–alginate, cellulose–agarose, cellulose–chitosan, chitosan–alginate and chitosan–agarose are synthesized, and their suitability as tissue engineering scaffolds is assessed. It is shown that naturally derived polymers in the form of hydrogels can be synthesized, and the lyophilization technique is used to synthesize various composites comprising these natural polymers. The composite scaffolds appear to be sponge-like after lyophilization. Scanning electron microscopy is used to demonstrate the formation of an interconnected porous network within the polymeric scaffold following lyophilization. It is also established that HeLa cells attach and proliferate well on scaffolds of cellulose, chitosan or alginate. The synthesis protocols reported in this study can therefore be used to manufacture naturally derived polymer-based scaffolds as potential biomaterials for various tissue engineering applications.


Journal of Biological Chemistry | 2006

Extracellular Matrix-mediated Signaling by Dentin Phosphophoryn Involves Activation of the Smad Pathway Independent of Bone Morphogenetic Protein

Julie Jadlowiec; Xiaoyuan Zhang; Jinhua Li; Phil G. Campbell; Charles Sfeir

Cells have ingenious mechanisms for interpreting complex signals from their external microenvironment. Previously, we have shown that phosphophoryn (PP) regulates the expression of bone/dentin marker genes via the integrin/MAPK signaling pathway (Jadlowiec, J., Koch, H., Zhang, X., Campbell, P. G., Seyedain, M., and Sfeir, C. (2004) J. Biol. Chem. 279, 53323–53330). We hypothesize that other signaling pathways important for mineralized tissue morphogenesis such as the Smad pathway could be involved in PP signaling. We determined activation of the Smad pathway in human adult mesenchymal stem cells following treatment with recombinant PP (rPP). We observed that PP enhanced phosphorylation of Smad1 within 30 min and Smad1 translocation to the nucleus within 1 h. PP up-regulated the expression of Smad1 target genes, Smad6, Dlx5, and Runx2. The timing of PP activation of Smad1 implies this is a direct effect; however, we also investigated the possible involvement of bone morphogenetic proteins in PP stimulation of the Smad pathway. PP was shown to up-regulate Bmp-2 gene expression 12 h post-treatment with PP, which is much later than initial detection of Smad1 phosphorylation at 30 min. Furthermore, addition of Noggin did not block Smad1 phosphorylation by PP. We propose that PP could signal via the Smad pathway by either directly stimulating the phosphorylation of Smad1 via integrins or other mechanisms. These might include integrin/bone morphogenetic protein receptor interactions or involvement of PP with other growth factors leading to the modulation of intracellular signaling. It is noteworthy that a non-transforming growth factor-β family member activates the Smad pathway. The role of PP in regulating the Smad pathway raises very interesting questions regarding the role of PP during bone and tooth development.


Acta Biomaterialia | 2015

Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction

Andrew Brown; Samer Zaky; Herbert Ray; Charles Sfeir

Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesiums impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices.


Acta Biomaterialia | 2013

Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition

Elia Beniash; Charles Sfeir

Degradable metals have been suggested as biomaterials with revolutionary potential for bone-related therapies. Of these candidate metals, magnesium alloys appear to be particularly attractive candidates because of their non-toxicity and outstanding mechanical properties. Despite their having been widely studied as orthopedic implants for bone replacement/regeneration, their undesirably rapid corrosion rate under physiological conditions has limited their actual clinical application. This study reports the use of a novel biomimetic peptide coating for Mg alloys to improve the alloy corrosion resistance. A 3DSS biomimetic peptide is designed based on the highly acidic, bioactive bone and dentin extracellular matrix protein, phosphophoryn. Surface characterization techniques (scanning electron microscopy, energy dispersive X-ray spectroscopy and diffuse-reflectance infrared spectroscopy) confirmed the feasibility of coating the biomimetic 3DSS peptide onto Mg alloy AZ31B. The 3DSS peptide was also used as a template for calcium phosphate deposition on the surface of the alloy. The 3DSS biomimetic peptide coating presented a protective role of AZ31B in both hydrogen evolution and electrochemical corrosion tests.


Journal of Biological Chemistry | 2011

Dentin Matrix Protein 1 (DMP1) Signals via Cell Surface Integrin

Hong Wu; Pang-Ning Teng; Thottala Jayaraman; Shinsuke Onishi; Jinhua Li; Leslie J. Bannon; Hongzhang Huang; John M. Close; Charles Sfeir

Dentin matrix phosphoprotein 1 (DMP1) is a non-collagenous, acidic extracellular matrix protein expressed chiefly in bone and dentin. We examined the DMP1 ability to engage cell-surface receptors and subsequently activate intracellular signaling pathways. Our data indeed show that the presence of extracellular DMP1 triggers focal adhesion point formation in human mesenchymal stem cells and osteoblast-like cells. We determine that DMP1 acts via interaction with αvβ3 integrin and stimulates phosphorylation of focal adhesion kinase. Further biochemical characterization confirms the activation of downstream effectors of the MAPK pathways, namely ERK and JNK, after DMP1 treatment. This activation is specifically inhibitable and can also be blocked by the addition of anti-αvβ3 integrin antibody. Furthermore, we show that extracellular treatment with DMP1 stimulates the translocation of phosphorylated JNK to the nucleus and a concomitant up-regulation of transcriptional activation by phosphorylated c-Jun. The evidence presented here indicates that DMP1 is specifically involved in signaling via extracellular matrix-cell surface interaction. Combined with the published DMP1-null data (Feng, J. Q., Ward, L. M., Liu, S., Lu, Y., Xie, Y., Yuan, B., Yu, X., Rauch, F., Davis, S. I., Zhang, S., Rios, H., Drezner, M. K., Quarles, L. D., Bonewald, L. F., and White, K. E. (2006) Nat. Genet. 38, 1310–1315) it can be hypothesized that DMP1 could be a key effector of ECM-osteocyte signaling.

Collaboration


Dive into the Charles Sfeir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elia Beniash

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Dana Olton

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Chaya

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donghyun Lee

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge