Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles Spillane is active.

Publication


Featured researches published by Charles Spillane.


Nature Biotechnology | 2012

Draft genome sequence of pigeonpea ( Cajanus cajan ), an orphan legume crop of resource-poor farmers

Rajeev K. Varshney; Weineng Chen; Yupeng Li; Arvind K. Bharti; Rachit K. Saxena; J. A. Schlueter; Mark Ta Donoghue; Sarwar Azam; G. Y. Fan; A. M. Whaley; Andrew D. Farmer; J. Sheridan; Aiko Iwata; Reetu Tuteja; R. V. Penmetsa; W. Wu; H. D. Upadhyaya; Shiaw-Pyng Yang; Trushar Shah; K. B. Saxena; T. Michael; W. R. McCombie; B. C. Yang; Gengyun Zhang; Yang H; Jun Wang; Charles Spillane; Douglas R. Cook; Gregory D. May; Xun Xu

Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.7% (605.78 Mb) of the 833.07 Mb pigeonpea genome. Genome analysis predicted 48,680 genes for pigeonpea and also showed the potential role that certain gene families, for example, drought tolerance–related genes, have played throughout the domestication of pigeonpea and the evolution of its ancestors. Although we found a few segmental duplication events, we did not observe the recent genome-wide duplication events observed in soybean. This reference genome sequence will facilitate the identification of the genetic basis of agronomically important traits, and accelerate the development of improved pigeonpea varieties that could improve food security in many developing countries.


Biochemical Society Transactions | 2009

miR-21 as a key regulator of oncogenic processes

S. Duygu Selcuklu; Mark Ta Donoghue; Charles Spillane

Small non-coding miRNAs (microRNAs) are emerging as key factors involved in cancer at all stages ranging from initiation to metastasis. MIRN21 is an miRNA gene that codes for the miR-21 miRNA which has been found to be overexpressed in many tumour samples where it has been analysed. Whereas consistent overexpression of miR-21 in tumours could be suggestive of functional effects of miR-21 in cancer, more in-depth functional studies with miR-21 are demonstrating that mir-21 displays oncogenic activity and can be classed as an oncomir. Extensive efforts are underway to identify the downstream genes and gene networks regulated by miR-21 and to identify the upstream factors that are regulating expression of miR-21. Even though miR-21 is one of the most intensively studied miRNAs, for all miRNAs, our understanding of miRNA signalling pathways is currently in its early stages. The unravelling of such RNA signalling pathways and networks will be key to understanding the role that dysregulated miRNA functioning can play in oncogenic processes.


PLOS Genetics | 2011

High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm

Philip Wolff; Isabelle Weinhofer; Jonathan Seguin; Pawel Roszak; Christian Beisel; Mark Ta Donoghue; Charles Spillane; Magnus Nordborg; Marc Rehmsmeier; Claudia Köhler

Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis.


Current Biology | 2000

Interaction of the Arabidopsis Polycomb group proteins FIE and MEA mediates their common phenotypes

Charles Spillane; Colin N. MacDougall; C. Stock; Claudia Köhler; Jean-Philippe Vielle-Calzada; S. M. Nunes; Ueli Grossniklaus; Justin Goodrich

Genes of the FERTILISATION INDEPENDENT SEED (FIS) class regulate cell proliferation during reproductive development in Arabidopsis [1-5]. The FIS genes FERTILISATION INDEPENDENT ENDOSPERM (FIE) and MEDEA (MEA) encode homologs of animal Polycomb group (Pc-G) proteins, transcriptional regulators that modify chromatin structure and are thought to form multimeric complexes [3-11]. To test whether similarities in fis mutant phenotypes reflect interactions between their protein products, we characterised FIE RNA and protein localisation in vivo, and FIE protein interactions in yeast and in vitro. Expression of FIE mRNA overlaps with that of MEA during embryo sac and seed development and is unaffected in mea mutants. Results from the yeast two-hybrid system and an in vitro pull-down assay indicate that MEA and FIE proteins interact. The relevance of this interaction in vivo is supported by the finding that FIE and MEA co-localise in the nucleus in transfected plant cells. Interaction of MEA and FIE is mediated by the amino-terminal region of MEA. Despite sequence divergence in this domain, MEA can interact with its corresponding animal partner Extrasexcombs (ESC) in the yeast two-hybrid system. We conclude that FIE and MEA act together as part of a multimeric complex and that this accounts for the similarities in mutant phenotypes. We propose that an ancient mechanism for chromatin modification has been independently recruited to different developmental processes in the two kingdoms.


Nature | 2007

Positive darwinian selection at the imprinted MEDEA locus in plants

Charles Spillane; Karl Schmid; Stéphane Pien; Juan-Miguel Escobar-Restrepo; Célia Baroux; Valeria Gagliardini; Damian R. Page; Kenneth H. Wolfe; Ueli Grossniklaus

In mammals and seed plants, a subset of genes is regulated by genomic imprinting where an allele’s activity depends on its parental origin. The parental conflict theory suggests that genomic imprinting evolved after the emergence of an embryo-nourishing tissue (placenta and endosperm), resulting in an intragenomic parental conflict over the allocation of nutrients from mother to offspring. It was predicted that imprinted genes, which arose through antagonistic co-evolution driven by a parental conflict, should be subject to positive darwinian selection. Here we show that the imprinted plant gene MEDEA (MEA), which is essential for seed development, originated during a whole-genome duplication 35 to 85 million years ago. After duplication, MEA underwent positive darwinian selection consistent with neo-functionalization and the parental conflict theory. MEA continues to evolve rapidly in the out-crossing species Arabidopsis lyrata but not in the self-fertilizing species Arabidopsis thaliana, where parental conflicts are reduced. The paralogue of MEA, SWINGER (SWN; also called EZA1), is not imprinted and evolved under strong purifying selection because it probably retained the ancestral function of the common precursor gene. The evolution of MEA suggests a late origin of genomic imprinting within the Brassicaceae, whereas imprinting is thought to have originated early within the mammalian lineage.


Nature Communications | 2014

The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure

Sateesh Kagale; Chushin Koh; John Nixon; Venkatesh Bollina; Wayne E. Clarke; Reetu Tuteja; Charles Spillane; Stephen J. Robinson; Matthew G. Links; Carling Clarke; Erin E. Higgins; Terry Huebert; Andrew G. Sharpe; Isobel A. P. Parkin

Camelina sativa is an oilseed with desirable agronomic and oil-quality attributes for a viable industrial oil platform crop. Here we generate the first chromosome-scale high-quality reference genome sequence for C. sativa and annotated 89,418 protein-coding genes, representing a whole-genome triplication event relative to the crucifer model Arabidopsis thaliana. C. sativa represents the first crop species to be sequenced from lineage I of the Brassicaceae. The well-preserved hexaploid genome structure of C. sativa surprisingly mirrors those of economically important amphidiploid Brassica crop species from lineage II as well as wheat and cotton. The three genomes of C. sativa show no evidence of fractionation bias and limited expression-level bias, both characteristics commonly associated with polyploid evolution. The highly undifferentiated polyploid genome of C. sativa presents significant consequences for breeding and genetic manipulation of this industrial oil crop.


Annual Review of Plant Biology | 2012

Epigenetic Mechanisms Underlying Genomic Imprinting in Plants

Claudia Köhler; Philip Wolff; Charles Spillane

Genomic imprinting, the differential expression of an autosomal gene that is dependent on its parent of origin, has independently evolved in flowering plants and mammals. In both of these organism classes, imprinting occurs in embryo-nourishing tissues-the placenta and the endosperm, respectively. It has been proposed that some imprinted genes control nutrient flow from the mother to the offspring. Genome-wide analyses of imprinted genes in plants have revealed that many imprinted genes are located in the vicinity of transposon or repeat sequences, implying that transposon insertions are associated with the evolution of imprinted loci. Imprinted expression of a number of genes is conserved between monocots and dicots, suggesting that long-term selection can maintain imprinted expression at some loci. In terms of epigenetic mechanisms, imprinted expression is largely controlled by an antagonistic action of DNA methylation and Polycomb group-mediated histone methylation in the vicinity of imprinted genes, whereby the position of such epigenetic modifications can determine whether a gene will be expressed mainly from either the maternally or paternally inherited alleles.


Current Opinion in Plant Biology | 2001

Genomic imprinting and seed development: endosperm formation with and without sex.

Ueli Grossniklaus; Charles Spillane; Damian R. Page; Claudia Köhler

During seed development, coordinated developmental programs lead to the formation of the embryo, endosperm and seed coat. The maternal effects of the genes affected in the fertilisation-independent seed class of mutants play an important role in seed development. The plant Polycomb proteins MEDEA and FERTILIZATION-INDEPENDENT ENDOSPERM physically interact and form a complex, in a manner similar to that of their counterparts in animals. Maternal-effect phenotypes can result from regulation by genomic imprinting, a phenomenon of critical importance for both sexual and apomictic seed development.


Journal of Bacteriology | 2007

Diffusible Signal Factor-Dependent Cell-Cell Signaling and Virulence in the Nosocomial Pathogen Stenotrophomonas maltophilia

Yvonne Fouhy; Karl Scanlon; Katherine Schouest; Charles Spillane; Lisa Crossman; Matthew B. Avison; Robert P. Ryan; John Maxwell Dow

The genome of Stenotrophomonas maltophilia encodes a cell-cell signaling system that is highly related to the diffusible signal factor (DSF)-dependent system of the phytopathogen Xanthomonas campestris. Here we show that in S. maltophilia, DSF signaling controls factors contributing to the virulence and antibiotic resistance of this important nosocomial pathogen.


Nature Biotechnology | 2004

Apomixis technology development-virgin births in farmers' fields?

Charles Spillane; Mark D. Curtis; Ueli Grossniklaus

Apomixis is the process of asexual reproduction through seed, in the absence of meiosis and fertilization, generating clonal progeny of maternal origin. Major benefits to agriculture could result from harnessing apomixis in crop plants. Although >400 apomictic plant species are known, apomixis is rare among crop plants, and the transfer of apomixis to crop varieties by conventional breeding has been largely unsuccessful. Because apomictic and sexual pathways are closely related, de novo engineering of apomixis might be achieved in sexually reproducing crops. Early consideration of issues relating to biosafety and intellectual property (IP) management can facilitate the acceptance and deployment of apomixis technology in agriculture.

Collaboration


Dive into the Charles Spillane's collaboration.

Top Co-Authors

Avatar

Peter C. McKeown

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Ta Donoghue

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Antoine Fort

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Claudia Köhler

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Magee

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Dorota Duszynska

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. M. Sikora

University College Cork

View shared research outputs
Researchain Logo
Decentralizing Knowledge