Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles T. Spencer is active.

Publication


Featured researches published by Charles T. Spencer.


Immunity | 2010

Mammalian Target of Rapamycin Protein Complex 2 Regulates Differentiation of Th1 and Th2 Cell Subsets via Distinct Signaling Pathways

Keunwook Lee; Prathyusha Gudapati; Srdjan Dragovic; Charles T. Spencer; Sebastian Joyce; Nigel Killeen; Mark A. Magnuson; Mark Boothby

Many functions of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) have been defined, but relatively little is known about the biology of an alternative mTOR complex, mTORC2. We showed that conditional deletion of rictor, an essential subunit of mTORC2, impaired differentiation into T helper 1 (Th1) and Th2 cells without diversion into FoxP3(+) status or substantial effect on Th17 cell differentiation. mTORC2 promoted phosphorylation of protein kinase B (PKB, or Akt) and PKC, Akt activity, and nuclear NF-kappaB transcription factors in response to T cell activation. Complementation with active Akt restored only T-bet transcription factor expression and Th1 cell differentiation, whereas activated PKC-theta reverted only GATA3 transcription factor and the Th2 cell defect of mTORC2 mutant cells. Collectively, the data uncover vital mTOR-PKC and mTOR-Akt connections in T cell differentiation and reveal distinct pathways by which mTORC2 regulates development of Th1 and Th2 cell subsets.


Journal of Immunology | 2011

IL-15 Regulates Homeostasis and Terminal Maturation of NKT Cells

Laura E. Gordy; Jelena S. Bezbradica; Andrew I. Flyak; Charles T. Spencer; Alexis Dunkle; Jingchun Sun; Aleksandar K. Stanic; Mark Boothby; You-Wen He; Zhongming Zhao; Luc Van Kaer; Sebastian Joyce

Semi-invariant NKT cells are thymus-derived innate-like lymphocytes that modulate microbial and tumor immunity as well as autoimmune diseases. These immunoregulatory properties of NKT cells are acquired during their development. Much has been learned regarding the molecular and cellular cues that promote NKT cell development, yet how these cells are maintained in the thymus and the periphery and how they acquire functional competence are incompletely understood. We found that IL-15 induced several Bcl-2 family survival factors in thymic and splenic NKT cells in vitro. Yet, IL-15–mediated thymic and peripheral NKT cell survival critically depended on Bcl-xL expression. Additionally, IL-15 regulated thymic developmental stage 2 to stage 3 lineage progression and terminal NKT cell differentiation. Global gene expression analyses and validation revealed that IL-15 regulated Tbx21 (T-bet) expression in thymic NKT cells. The loss of IL-15 also resulted in poor expression of key effector molecules such as IFN-γ, granzyme A and C, as well as several NK cell receptors, which are also regulated by T-bet in NKT cells. Taken together, our findings reveal a critical role for IL-15 in NKT cell survival, which is mediated by Bcl-xL, and effector differentiation, which is consistent with a role of T-bet in regulating terminal maturation.


PLOS Pathogens | 2013

Granzyme A Produced by γ9δ2 T Cells Induces Human Macrophages to Inhibit Growth of an Intracellular Pathogen

Charles T. Spencer; Getahun Abate; Isaac G. Sakala; Mei Xia; Steven M. Truscott; Christopher S. Eickhoff; Rebecca Linn; Azra Blazevic; Sunil S. Metkar; Guangyong Peng; Christopher J. Froelich; Daniel F. Hoft

Human γ9δ2 T cells potently inhibit pathogenic microbes, including intracellular mycobacteria, but the key inhibitory mechanism(s) involved have not been identified. We report a novel mechanism involving the inhibition of intracellular mycobacteria by soluble granzyme A. γ9δ2 T cells produced soluble factors that could pass through 0.45 µm membranes and inhibit intracellular mycobacteria in human monocytes cultured below transwell inserts. Neutralization of TNF-α in co-cultures of infected monocytes and γ9δ2 T cells prevented inhibition, suggesting that TNF-α was the critical inhibitory factor produced by γ9δ2 T cells. However, only siRNA- mediated knockdown of TNF-α in infected monocytes, but not in γ9δ2 T cells, prevented mycobacterial growth inhibition. Investigations of other soluble factors produced by γ9δ2 T cells identified a highly significant correlation between the levels of granzyme A produced and intracellular mycobacterial growth inhibition. Furthermore, purified granzyme A alone induced inhibition of intracellular mycobacteria, while knockdown of granzyme A in γ9δ2 T cell clones blocked their inhibitory effects. The inhibitory mechanism was independent of autophagy, apoptosis, nitric oxide production, type I interferons, Fas/FasL and perforin. These results demonstrate a novel microbial defense mechanism involving granzyme A-mediated triggering of TNF-α production by monocytes leading to intracellular mycobacterial growth suppression. This pathway may provide a protective mechanism relevant for the development of new vaccines and/or immunotherapies for macrophage-resident chronic microbial infections.


Journal of Clinical Investigation | 2013

Discovering naturally processed antigenic determinants that confer protective T cell immunity

Pavlo Gilchuk; Charles T. Spencer; Stephanie B. Conant; Timothy Hill; Jennifer J. Gray; Xinnan Niu; Mu Zheng; John J. Erickson; Kelli L. Boyd; K. Jill McAfee; Carla Oseroff; Sine Reker Hadrup; Jack R. Bennink; William H. Hildebrand; Kathryn M. Edwards; James E. Crowe; John V. Williams; Søren Buus; Alessandro Sette; Ton N. M. Schumacher; Andrew J. Link; Sebastian Joyce

CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infection - information that is critical for the rational design of TCD8-targeted vaccines. We employed a proteomics-based approach for large-scale discovery of naturally processed determinants derived from a complex pathogen, vaccinia virus (VACV), that are presented by the most frequent representatives of four major HLA class I supertypes. Immunologic characterization revealed that many previously unidentified VACV determinants were recognized by smallpox-vaccinated human peripheral blood cells in a variegated manner. Many such determinants were recognized by HLA class I-transgenic mouse immune TCD8 too and elicited protective TCD8 immunity against lethal intranasal VACV infection. Notably, efficient processing and stable presentation of immune determinants as well as the availability of naive TCD8 precursors were sufficient to drive a multifunctional, protective TCD8 response. Our approach uses fundamental insights into T cell epitope processing and presentation to define targets of protective TCD8 immunity within human pathogens that have complex proteomes, suggesting that this approach has general applicability in vaccine sciences.


Proteome | 2016

Personalized Proteomics: The Future of Precision Medicine

Trevor T. Duarte; Charles T. Spencer

Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient’s response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient’s condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate.Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patients response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patients condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate.


Materials Technology | 2017

Cellular response of Staphylococcus aureus to nanostructured metallic biomedical devices: surface binding and mechanism of disruption of colonization

K.C. Nune; M.C. Somani; Charles T. Spencer; R.D.K. Misra

Metallic materials with nanometre-sized grains provide surfaces that are different from conventional polycrystalline materials because of large proportion of grain boundaries. We describe here, the combination of materials science and engineering involving nanocrystallization and alloying with copper and cellular biology to develop our understanding of inhibition of bacterial colonization and biofilm formation on nanostructured surfaces that are significantly different from conventional coarse-grained (CG) structures. A novel process referred as phase reversion was used to induce nanostructuring in the conventional CG metallic material. Quantitative and qualitative studies of bacterial colonization indicated that the combined effect of nanostructuring and alloying with copper effectively influenced the degree of bacterial colonization, a behaviour related to passive film on the surface. The high density of grain boundaries in nanocrystalline materials provided increased diffusion path for Cr and Cu atoms to reach the surface to form a stable passive film with a high copper concentration. It is envisaged that the stable passive film on the nanostructured surface develops inward-growing oxide pegs at high fraction grain boundaries that lead to strong interfacial bonds between the substrate and exterior passive film. The passive film minimized free energy of the system and surface electron activity, which effectively hindered interaction between the material surface and the micro-organism.


Current Opinion in Organ Transplantation | 2010

Minor histocompatibility antigens: presentation principles, recognition logic and the potential for a healing hand.

Charles T. Spencer; Pavlo Gilchuk; Srdjan Dragovic; Sebastian Joyce

Purpose of reviewThere is ample evidence indicating a pathologic role for minor histocompatibility antigens in inciting graft-versus-host disease in major histocompatibility complex (MHC)-matched bone marrow transplantation and rejection of solid organ allografts. Here we review the current knowledge of the genetic and biochemical bases for the cause of minor histoincompatibility and the structural basis for the recognition of the resulting alloantigens by the T-cell receptor. Recent findingsRecent evidence indicates that we as independently conceived individuals are genetically unique, thus, offering a mechanism for minor histoincompatibility between MHC-identical donor–recipient pairs. Furthermore, advances in delineating the mechanisms underlying antigen cross-presentation by MHC class I molecules and a critical role for autophagy in presenting cytoplasmic antigens by MHC class II molecules have been made. These new insights coupled with the X-ray crystallographic solution of several peptide/MHC–T-cell receptor structures have revealed mechanisms of histoincompatibility. SummaryOn the basis of these new insights, ways to test for allograft compatibility and concoction of immunotherapies are discussed.


Proteomics Clinical Applications | 2015

Viral infection causes a shift in the self peptide repertoire presented by human MHC class I molecules.

Charles T. Spencer; Jelena S. Bezbradica; Mireya Ramos; Chenoa D. Arico; Stephanie B. Conant; Pavlo Gilchuk; Jennifer J. Gray; Mu Zheng; Xinnan Niu; William H. Hildebrand; Andrew J. Link; Sebastian Joyce

MHC class I presentation of peptides allows T cells to survey the cytoplasmic protein milieu of host cells. During infection, presentation of self peptides is, in part, replaced by presentation of microbial peptides. However, little is known about the self peptides presented during infection, despite the fact that microbial infections alter host cell gene expression patterns and protein metabolism.


European Journal of Immunology | 2013

Sculpting MHC class II–restricted self and non‐self peptidome by the class I Ag‐processing machinery and its impact on Th‐cell responses

Charles T. Spencer; Srdjan Dragovic; Stephanie B. Conant; Jennifer J. Gray; Mu Zheng; Parimal Samir; Xinnan Niu; Magdalini Moutaftsi; Luc Van Kaer; Alessandro Sette; Andrew J. Link; Sebastian Joyce

It is generally assumed that the MHC class I antigen (Ag)‐processing (CAP) machinery — which supplies peptides for presentation by class I molecules — plays no role in class II–restricted presentation of cytoplasmic Ags. In striking contrast to this assumption, we previously reported that proteasome inhibition, TAP deficiency or ERAAP deficiency led to dramatically altered T helper (Th)‐cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags. Herein, we tested whether altered Ag processing and presentation, altered CD4+ T‐cell repertoire, or both underlay the above finding. We found that TAP deficiency and ERAAP deficiency dramatically altered the quality of class II‐associated self peptides suggesting that the CAP machinery impacts class II–restricted Ag processing and presentation. Consistent with altered self peptidomes, the CD4+ T‐cell receptor repertoire of mice deficient in the CAP machinery substantially differed from that of WT animals resulting in altered CD4+ T‐cell Ag recognition patterns. These data suggest that TAP and ERAAP sculpt the class II–restricted peptidome, impacting the CD4+ T‐cell repertoire, and ultimately altering Th‐cell responses. Together with our previous findings, these data suggest multiple CAP machinery components sequester or degrade MHC class II–restricted epitopes that would otherwise be capable of eliciting functional Th‐cell responses.


BioMed Research International | 2018

Obesity Exacerbates the Cytokine Storm Elicited by Francisella tularensis Infection of Females and Is Associated with Increased Mortality

Mireya G. Ramos Muniz; Matthew Palfreeman; Nicole Setzu; Michelle A. Sanchez; Pamela Saenz Portillo; Kristine M. Garza; Kristin L. Gosselink; Charles T. Spencer

Infection with Francisella tularensis, the causative agent of the human disease tularemia, results in the overproduction of inflammatory cytokines, termed the cytokine storm. Excess metabolic byproducts of obesity accumulate in obese individuals and activate the same inflammatory signaling pathways as F. tularensis infection. In addition, elevated levels of leptin in obese individuals also increase inflammation. Since leptin is produced by adipocytes, we hypothesized that increased fat of obese females may make them more susceptible to F. tularensis infection compared with lean individuals. Lean and obese female mice were infected with F. tularensis and the immunopathology and susceptibility monitored. Plasma and tissue cytokines were analyzed by multiplex ELISA and real-time RT-PCR, respectively. Obese mice were more sensitive to infection, developing a more intense cytokine storm, which was associated with increased death of obese mice compared with lean mice. This enhanced inflammatory response correlated with in vitro bacteria-infected macrophage cultures where addition of leptin led to increased production of inflammatory cytokines. We conclude that increased basal leptin expression in obese individuals causes a persistent low-level inflammatory response making them more susceptible to F. tularensis infection and heightening the generation of the immunopathological cytokine storm.

Collaboration


Dive into the Charles T. Spencer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Sette

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mu Zheng

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge