Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles W. Holmes is active.

Publication


Featured researches published by Charles W. Holmes.


Geology | 2000

Climatic variability in the eastern United States over the past millennium from Chesapeake Bay sediments

Thomas M. Cronin; Debra A. Willard; Alexander W. Karlsen; Scott E. Ishman; S. Verardo; John P. McGeehin; R. Kerhin; Charles W. Holmes; Steven M. Colman; A. Zimmerman

Salinity oscillations caused by multidecadal climatic variability had major impacts on the Chesapeake Bay estuarine ecosystem during the past 1000 yr. Microfossils from sediments dated by radiometry ( 14 C, 137 Cs, 210 Pb) and pollen stratigraphy indicate that salinity in mesohaline regions oscillated 10‐15 ppt during periods of extreme drought (low fresh-water discharge) and wet climate (high discharge). During the past 500 yr, 14 wet-dry cycles occurred, including sixteenth and early seventeenth century megadroughts that exceeded twentieth century droughts in their severity. These droughts correspond to extremely dry climate also recorded in North American tree-ring records and by early colonists. Wet periods occurred every ~60‐70 yr, began abruptly, lasted <20 yr, and had mean annual rainfall ~25%‐30% and fresh-water discharge ~40%‐50% greater than during droughts. A shift toward wetter regional climate occurred in the early nineteenth century, lowering salinity and compounding the effects of agricultural land clearance on bay ecosystems.


Estuaries | 2000

Historical trends in Chesapeake Bay dissolved oxygen based on benthic foraminifera from sediment cores

Alexander W. Karlsen; Thomas M. Cronin; Scott E. Ishman; Debra A. Willard; Randy Kerhin; Charles W. Holmes; Marci Marot

Environmentally sensitive benthic foraminifera (protists) from Chesapeake Bay were used as bioindicators to estimate the timing and degree of changes in dissolved oxygen (DO) over the past five centuries. Living foraminifers from 19 surface samples and fossil assemblages from 11 sediment cores dated by210Pb,137Cs,14C, and pollen stratigraphy were analyzed from the tidal portions of the Patuxent, Potomac, and Choptank Rivers and the main channel of the Chesapeake Bay.Ammonia parkinsoniana, a facultative anaerobe tolerant of periodic anoxic conditions, comprises an average of 74% of modern Chesapeake foraminiferal assemblages (DO-0.47 and 1.72 ml l−1) compared to 0% to 15% of assemblages collected in the 1960s. Paleoecological analyses show thatA. parkinsoniana was absent prior to the late 17th century, increased to 10–25% relative frequency between approximately 1670–1720 and 1810–1900, and became the dominant (60–90%) benthic formaniferal species in channel environments beginning in the early 1970s. Since the 1970s, deformed tests ofA. parkinsoniana occur in all cores (10–20% ofAmmonia), suggesting unprecedented stressful benthic conditions. These cores indicate that prior to the late 17th century, there was limited oxygen depletion. During the past 200 years, decadal scale variability in oxygen depletion has occurred, as dysoxic (DO=0.1–1.0 ml l−1), perhaps short-term anoxic (DO<0.1 ml l−1) conditions developed. The most extensive (spatially and temporally) anoxic conditions were reached during the 1970s. Over decadal timescales, DO variability seems to be linked closely to climatological factors influencing river discharge; the unprecedented anoxia since the early 1970s is attributed mainly to high freshwater flow and to an increase in nutrient concentrations from the watershed.


Ecological Monographs | 2006

RESPONSE OF EVERGLADES TREE ISLANDS TO ENVIRONMENTAL CHANGE

Debra A. Willard; Christopher E. Bernhardt; Charles W. Holmes; Bryan D. Landacre; Marci Marot

Tree islands are centers of biodiversity within the Florida Everglades, USA, but the factors controlling their distribution, formation, and development are poorly understood. We use pollen assemblages from tree islands throughout the greater Everglades ecosystem to reconstruct the timing of tree island formation, patterns of development, and response to specific climatic and environmental stressors. These data indicate that fixed (teardrop-shaped) and strand tree islands developed well before substantial human alteration of the system, with initial tree island vegetation in place between 3500 and 500 calibrated years before present (cal yr BP), depending on the location in the Everglades wetland. Tree island development appears to have been triggered by regional- to global-scale climatic events at ;2800 cal yr BP, 1600- 1500 cal yr BP, 1200-1000 cal yr BP (early Medieval Warm Period), and 500-200 cal yr BP (Little Ice Age). These periods correspond to drought intervals documented in Central and South America and periods of southward displacement of the Intertropical Convergence Zone. The records indicate a coherence of climate patterns in both subtropical North America and the Northern Hemisphere Neotropics. Water management practices of the 20th century altered plant communities and size of tree islands throughout the Everglades. Responses range from loss of tree islands due to artificially long hydroperiods and deep water to expansion of tree islands after flow reductions. These data provide evidence for the rapidity of tree island response to specific hydrologic change and facilitate prediction of the response to future changes associated with Everglades restoration plans.


Chemical Geology | 1998

Speciation and isotopic composition of sedimentary sulfur in the Everglades, Florida, USA

Anne L. Bates; Elliott C. Spiker; Charles W. Holmes

Abstract We have studied the sulfur speciation and isotopic composition of two peat cores from Water Conservation Area 2A (WCA 2A) in the Florida Everglades. Core site E1 is affected by agricultural runoff from the Hillsboro Canal which drains the Everglades Agricultural Area; Core site U3 is distant from the canal and relatively unaffected by agricultural runoff. Depth profiles of the total sulfur content of both cores show fairly constant levels (∼0.7 wt.%) below about 25–30 cm depth in Core E1 and below 40–45 cm in Core U3. Above these depths, total sulfur increases to as much as 1.52 wt.% in Core E1 and 1.74 wt.% in Core U3, suggesting that more sulfur has entered the sediments and/or that more sulfur is being retained in recent times at both sampling sites. The changes in total sulfur content with depth in Core E1 correlate with changes in total phosphorus that have been observed in other studies at core sites near the Hillsboro Canal. This correlation of total sulfur with phosphorus with depth is not seen in Core U3 located away from the canal, possibly because phosphorus is more effectively retained than sulfur in the organic sediment near the canal. Organic-sulfur (OS) concentrations are at least twice as high as the disulfide-sulfur (DS) concentrations in the upper parts of both cores suggesting that iron is presently limiting the amount of disulfide minerals formed in these sediments. The degree of pyritization (DOP) in the upper parts of the cores suggest that sulfide mineralization is limited by the availability of highly reactive iron during the earliest stages of diagenesis. Positive δ 34 S values for reduced sulfur forms in both cores indicate a relatively restricted sulfate reservoir, consistent with nearly complete reduction of the sulfate available in the sediment at any given time. Differences between the two cores appear in the δ 34 S values for the near-surface sediments. The DS δ 34 S values in the upper 10.0 cm of sediment are more positive at site E1, with a mean δ 34 S value of +12.9 per mil, than at site U3, with a mean δ 34 S value of +2.9 per mil. These results may indicate that increased rates of organic deposition due to nutrient loading near the canal have increased the rate of sulfate reduction at the E1 site in recent times. Acid-volatile-sulfide (AVS) concentrations are lower than DS and OS concentrations by at least a factor of 10. Increasing δ 34 S values for AVS with increasing depth in both cores suggests ongoing reduction of a limited porewater sulfate reservoir after deposition. The disulfide and organic-sulfur δ 34 S values diverge from the δ 34 S values for AVS with depth, suggesting that most of the transformation of AVS into disulfide minerals or incorporation of sulfur into organic matter occurs in the near-surface sediments. A comparison of organic-sulfur δ 34 S values in the dominant flora at the U3 site (sawgrass leaves and periphyton) with organic-sulfur δ 34 S values at the top of the U3 core indicates that there was early incorporation of an isotopically light sulfide species into the organic matter.


PLOS ONE | 2015

Sedimentation Pulse in the NE Gulf of Mexico following the 2010 DWH Blowout

Gregg R. Brooks; Rebekka A. Larson; Patrick T. Schwing; Isabel C. Romero; Christopher Moore; Gert-Jan Reichart; Tom Jilbert; Jeffrey P. Chanton; David W. Hastings; Will A. Overholt; Kala P. Marks; Joel E. Kostka; Charles W. Holmes; David J. Hollander

The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicates a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. Further, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge.


Geology | 2005

Brucite microbialites in living coral skeletons: Indicators of extreme microenvironments in shallow-marine settings

Luke D. Nothdurft; Gregory E. Webb; Noreen A. Buster; Charles W. Holmes; James E. Sorauf; J. T. Kloprogge

Brucite [Mg(OH)2] microbialites occur in vacated interseptal spaces of living scleractinian coral colonies (Acropora, Pocillopora, Porites) from subtidal and intertidal settings in the Great Barrier Reef, Australia, and subtidal Montastraea from the Florida Keys, United States. Brucite encrusts microbial filaments of endobionts (i.e., fungi, green algae, cyanobacteria) growing under organic biofilms; the brucite distribution is patchy both within interseptal spaces and within coralla. Although brucite is undersaturated in seawater, its precipitation was apparently induced in the corals by lowered pCO2 and increased pH within microenvironments protected by microbial biofilms. The occurrence of brucite in shallow-marine settings highlights the importance of microenvironments in the formation and early diagenesis of marine carbonates. Significantly, the brucite precipitates discovered in microenvironments in these corals show that early diagenetic products do not necessarily reflect ambient seawater chemistry. Errors in environmental interpretation may arise where unidentified precipitates occur in microenvironments in skeletal carbonates that are subsequently utilized as geochemical seawater proxies.


Geomorphology | 2002

A comparison of factors controlling sedimentation rates and wetland loss in fluvial-deltaic systems, Texas Gulf coast

William A. White; Robert A. Morton; Charles W. Holmes

Abstract Submergence of coastal marshes in areas where rates of relative sea-level rise exceed rates of marsh sedimentation, or vertical accretion, is a global problem that requires detailed examination of the principal processes that establish, maintain, and degrade these biologically productive environments. Using a simple 210 Pb-dating model, we measured sedimentation rates in cores from the Trinity, Lavaca–Navidad, and Nueces bayhead fluvial–deltaic systems in Texas where more than 2000 ha of wetlands have been lost since the 1950s. Long-term average rates of fluvial–deltaic aggradation decrease southwestward from 0.514±0.008 cm year −1 in the Trinity, 0.328±0.022 cm year −1 in the Lavaca–Navidad, to 0.262±0.034 cm year −1 in the Nueces. The relative magnitudes of sedimentation and wetland loss correlate with several parameters that define the differing fluvial–deltaic settings, including size of coastal drainage basin, average annual rainfall, suspended sediment load, thickness of Holocene mud in the valley fill, and rates of relative sea-level rise. There is some evidence that upstream reservoirs have reduced wetland sedimentation rates, which are now about one-half the local rates of relative sea-level rise. The extant conditions indicate that fluvial–deltaic marshes in these valleys will continue to be lost as a result of submergence and erosion.


Geology | 2000

Last interglacial reef growth beneath Belize barrier and isolated platform reefs

Eberhard Gischler; Anthony J. Lomando; J. Harold Hudson; Charles W. Holmes

We report the first radiometric dates (thermal-ionization mass spectrometry) from late Pleistocene reef deposits from offshore Belize, the location of the largest modern reef complex in the Atlantic Ocean. The results presented here can be used to explain significant differences in bathymetry, sedimentary facies, and reef development of this major reef area, and the results are significant because they contribute to the knowledge of the regional geology of the eastern Yucatan. The previously held concept of a neotectonically stable eastern Yucatan is challenged. The dates indicate that Pleistocene reefs and shallow-water limestones, which form the basement of modern reefs in the area, accumulated ca. 125–130 ka. Significant differences in elevation of the samples relative to present sea level (>10 m) have several possible causes. Differential subsidence along a series of continental margin fault blocks in combination with variation in karstification are probably the prime causes. Differential subsidence is presumably related to initial extension and later left-lateral movements along the adjacent active boundary between the North American and Caribbean plates. Increasing dissolution toward the south during Pleistocene sea-level lowstands is probably a consequence of higher precipitation rates in mountainous southern Belize.


Journal of Sedimentary Research | 1990

High-Energy Carbonate-Sand Accumulation, the Quicksands, Southwest Florida Keys

Eugene A. Shinn; Barbara H. Lidz; Charles W. Holmes

ABSTRACT High-resolution seismic-reflection profiles of the Quicksands, located along a broad ridge on the platform shelf west of Key West, Florida, indicate a significant deposit of non-oolitic carbonate sand occurs in a belt 47 km long by 28 km wide. The surface of the belt is ornamented by large (5 m), migrating tidal bars, oriented in a north-south direction, on which sand waves, oriented in an east-west direction, are superimposed. Some of the sand waves are awash at low tide. The sand waves are formed by strong reversing tidal currents flowing between the Gulf of Mexico and the Straits of Florida. The waves migrate directly over Pleistocene bedrock to the east, but the deposit thickens to the west and sand waves there overlie non-oolitic Holocene accumulations as thick as 12 m. Westward- ipping accretionary bedding indicates that net migration of the sands is to the west, despite north-south movement of tidal currents. The westward edge of the accumulation has accreted over deeper, muddier deposits. Although tidal currents and resultant bedforms appear identical to those of active ooid deposits in the Bahamas and elsewhere, no oolitically coated grains were found in this study. Thin-section analyses show the principal component (average 48%) of the sands is fragmented plates of species of the green alga Halimeda, followed by particulate coral (average 17%), which increases off the flanks of the main sand body. Short vibracores confirm the presence of cross-bedding.


Coral Reefs | 2006

Magnesium content within the skeletal architecture of the coral Montastraea faveolata: locations of brucite precipitation and implications to fine-scale data fluctuations

Noreen A. Buster; Charles W. Holmes

Small portions of coral cores were analyzed using a high-resolution laser ablation inductively coupled plasma mass spectrometer (LA ICP-MS) to determine the geochemical signatures within and among specific skeletal structures in the large framework coral, Montastraea faveolata. Vertical transects were sampled along three parallel skeletal structures: endothecal (septal flank), corallite wall, and exothecal (costal flank) areas. The results demonstrate that trace element levels varied among the three structures. Magnesium (Mg) varied among adjacent structures and was most abundant within the exothecal portion of the skeleton. Scanning electron microscopy (SEM) revealed the presence of hexagonal crystals forming thick discs, pairs or doublets of individual crystals, and rosettes in several samples. High Mg within these crystals was confirmed with energy dispersive spectroscopy (EDS), infrared spectrometry, and LA ICP-MS. The chemical composition is consistent with the mineral brucite [Mg(OH2)]. These crystals are located exclusively in the exothecal area of the skeleton, are often associated with green endolithic algae, and are commonly associated with increased Mg levels found in the adjacent corallite walls. Although scattered throughout the exothecal, the brucite crystals are concentrated within green bands where levels of Mg increase substantially relative to other portions of the skeleton. The presence and locations of high-Mg crystals may explain the fine-scale fluctuations in Mg data researchers have been questioning for years.

Collaboration


Dive into the Charles W. Holmes's collaboration.

Top Co-Authors

Avatar

Debra A. Willard

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Marci Marot

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott E. Ishman

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Thomas M. Cronin

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Eugene A. Shinn

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Noreen A. Buster

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Barbara H. Lidz

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jack L. Kindinger

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert A. Morton

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge