Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles Widström is active.

Publication


Featured researches published by Charles Widström.


Cancer Research | 2006

Tumor Imaging Using a Picomolar Affinity HER2 Binding Affibody Molecule

Anna Orlova; Mikaela Magnusson; Tove L.J. Eriksson; Martin Nilsson; Barbro Larsson; Ingmarie Höidén-Guthenberg; Charles Widström; Vladimir Tolmachev; Stefan Ståhl; Fredrik Nilsson

The detection of cell-bound proteins that are produced due to aberrant gene expression in malignant tumors can provide important diagnostic information influencing patient management. The use of small radiolabeled targeting proteins would enable high-contrast radionuclide imaging of cancers expressing such antigens if adequate binding affinity and specificity could be provided. Here, we describe a HER2-specific 6 kDa Affibody molecule (hereinafter denoted Affibody molecule) with 22 pmol/L affinity that can be used for the visualization of HER2 expression in tumors in vivo using gamma camera. A library for affinity maturation was constructed by re-randomization of relevant positions identified after the alignment of first-generation variants of nanomolar affinity (50 nmol/L). One selected Affibody molecule, Z(HER2:342) showed a >2,200-fold increase in affinity achieved through a single-library affinity maturation step. When radioiodinated, the affinity-matured Affibody molecule showed clear, high-contrast visualization of HER2-expressing xenografts in mice as early as 6 hours post-injection. The tumor uptake at 4 hours post-injection was improved 4-fold (due to increased affinity) with 9% of the injected dose per gram of tissue in the tumor. Affibody molecules represent a new class of affinity molecules that can provide small sized, high affinity cancer-specific ligands, which may be well suited for tumor imaging.


The Journal of Nuclear Medicine | 2009

Targeting of HER2-Expressing Tumors with a Site-Specifically 99mTc-Labeled Recombinant Affibody Molecule, ZHER2:2395, with C-Terminally Engineered Cysteine

Sara Ahlgren; Helena Wållberg; Thuy Tran; Charles Widström; Magnus Hjertman; Lars Abrahmsén; Dietmar Berndorff; Ludger Dinkelborg; John E. Cyr; Joachim Feldwisch; Anna Orlova; Vladimir Tolmachev

The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Small (7 kDa) high-affinity anti-HER2 Affibody molecules may be suitable tracers for SPECT visualization of HER2-expressing tumors. The use of generator-produced 99mTc as a label would facilitate the prompt translation of anti-HER2 Affibody molecules into use in clinics. Methods: A C-terminal cysteine was introduced into the Affibody molecule ZHER2:342 to enable site-specific labeling with 99mTc. Two recombinant variants, His6-ZHER2:342-Cys (dissociation constant [KD], 29 pM) and ZHER2:2395-Cys, lacking a His tag (KD, 27 pM), were labeled with 99mTc in yields exceeding 90%. The binding specificity and the cellular processing of Affibody molecules were studied in vitro. Biodistribution and γ-camera imaging studies were performed in mice bearing HER2-expressing xenografts. Results: 99mTc-His6-ZHER2:342-Cys was capable of targeting HER2-expressing SKOV-3 xenografts in SCID mice, but the liver radioactivity uptake was high. A series of comparative biodistribution experiments indicated that the presence of the His tag caused elevated accumulation in the liver. 99mTc-ZHER2:2395-Cys, not containing a His tag, showed low uptake in the liver and high and specific uptake in HER2-expressing xenografts. Four hours after injection, the radioactivity uptake values (percentage of injected activity per gram of tissue [%IA/g]) were 6.9 ± 2.5 (mean ± SD) %IA/g in LS174T xenografts (moderate level of HER2 expression) and 15 ± 3 %IA/g in SKOV-3 xenografts (high level of HER2 expression). The corresponding tumor-to-blood ratios were 88 ± 24 and 121 ± 24, respectively. Both LS174T and SKOV-3 xenografts were clearly visualized with a clinical γ-camera 1 h after injection of 99mTc-ZHER2:2395-Cys. Conclusion: The Affibody molecule 99mTc-ZHER2:2395-Cys is a promising tracer for SPECT visualization of HER2-expressing tumors.


The Journal of Nuclear Medicine | 2013

Individualized Dosimetry of Kidney and Bone Marrow in Patients Undergoing 177Lu-DOTA-Octreotate Treatment

Mattias Sandström; Ulrike Garske-Roman; Dan Granberg; Silvia Johansson; Charles Widström; Barbro Eriksson; Anders Sundin; Hans Lundqvist; Mark Lubberink

The organs at risk in radionuclide therapy with 177Lu-octreotate are the bone marrow and the kidneys. The primary aim of this study was to develop an individualized dosimetry protocol for the bone marrow. The secondary aim was to identify those patients, undergoing fractionated therapy with 7.4 GBq/cycle, who first reached an accumulated dose of either 2 Gy to the bone marrow or 23 Gy to the kidneys. Methods: Two hundred patients with metastatic neuroendocrine tumors with high somatostatin receptor expression were included. After the administration of 7.4 GBq of 177Lu-octreotate, blood samples were drawn 6 times within the first 24 h. In 50 patients, additional blood samples were obtained at 96 and 168 h. Moreover, urine was collected from 30 patients during the first 24 h. Planar whole-body and SPECT/CT images over the abdomen were acquired at 24, 96, and 168 h after the infusion. Calculation of the absorbed radiation dose to the bone marrow was based on blood and urinary activity curves combined with organ-based analysis of the whole-body images. The absorbed dose to the kidney was calculated from the pharmacokinetic data obtained from SPECT/CT. Results: For a single cycle of 7.4 GBq, the absorbed dose to the bone marrow and the kidney ranged from 0.05 to 0.4 Gy and from 2 to 10 Gy, respectively. In 197 of 200 patients, the kidneys accumulated an absorbed dose of 23 Gy before the bone marrow reached 2 Gy. Between 2 and 10 cycles of 177Lu-octreotate could be administered before the upper dose limit for the individual patient was reached. Conclusion: A method based on repeated whole-body imaging in combination with blood and urinary activity data over time was developed to determine the absorbed dose to the bone marrow. The dose-limiting organ was the kidney in 197 of 200 patients. In 50% of the patients, more than 4 cycles of 7.4 GBq of 177Lu-octreotate could be administered, whereas 20% of the subjects were treated with fewer than 4 cycles. Individualized absorbed dose calculation is essential to optimize the therapy.


The Journal of Nuclear Medicine | 2011

Molecular design and optimization of 99mTc-labeled recombinant affibody molecules improves their biodistribution and imaging properties.

Helena Wållberg; Anna Orlova; Mohammed Altai; Seyed Jalal Hosseinimehr; Charles Widström; Jennie Malmberg; Stefan Ståhl; Vladimir Tolmachev

Affibody molecules are a recently developed class of targeting proteins based on a nonimmunoglobulin scaffold. The small size (7 kDa) and subnanomolar affinity of Affibody molecules enables high-contrast imaging of tumor-associated molecular targets, particularly human epidermal growth factor receptor type 2 (HER2). 99mTc as a label offers advantages in clinical practice, and earlier studies demonstrated that 99mTc-labeled recombinant Affibody molecules with a C-terminal cysteine could be used for HER2 imaging. However, the renal retention of radioactivity exceeded tumor uptake, which might complicate imaging of metastases in the lumbar region. The aim of this study was to develop an agent with low renal uptake and preserved tumor targeting. Methods: A series of recombinant derivatives of the HER2-binding ZHER2:342 Affibody molecule with a C-terminal chelating sequence, –GXXC (X denoting glycine, serine, lysine, or glutamate), was designed. The constructs were labeled with 99mTc and evaluated in vitro and in vivo. Results: All variants were stably labeled with 99mTc, with preserved capacity to bind specifically to HER2-expressing cells in vitro and in vivo. The composition of the chelating sequence had a clear influence on the cellular processing and biodistribution properties of the Affibody molecules. The best variant, 99mTc-ZHER2:V2, with the C-terminal chelating sequence –GGGC, provided the lowest radioactivity retention in all normal organs and tissues including the kidneys. 99mTc-ZHER2:V2 displayed high uptake of radioactivity in HER2-expressing xenografts, 22.6 ± 4.0 and 7.7 ± 1.5 percentage injected activity per gram of tissue at 4 h after injection in SKOV-3 (high HER2 expression) and DU-145 (low HER2 expression) tumors, respectively. In both models, the tumor uptake exceeded the renal uptake. Conclusion: These results demonstrate that the biodistribution properties of recombinant 99mTc-labeled Affibody molecules can be optimized by modification of the C-terminal cysteine-containing chelating sequence. 99mTc-ZHER2:V2 is a promising candidate for further development as a diagnostic radiopharmaceutical for imaging of HER2-expressing tumors. These results may be useful for the development of imaging agents based on other Affibody molecules and, hopefully, other scaffolds.


Critical Care Medicine | 2014

Early inflammation mainly affects normally and poorly aerated lung in experimental ventilator-induced lung injury*.

João Batista Borges; Eduardo Leite Vieira Costa; Fernando Suarez-Sipmann; Charles Widström; Anders Larsson; Marcelo B. P. Amato; Göran Hedenstierna

Objective:The common denominator in most forms of ventilator-induced lung injury is an intense inflammatory response mediated by neutrophils. PET with [18F]fluoro-2-deoxy-D-glucose can be used to image cellular metabolism, which, during lung inflammatory processes, mainly reflects neutrophil activity, allowing the study of regional lung inflammation in vivo. The aim of this study was to assess the location and magnitude of lung inflammation using PET imaging of [18F]fluoro-2-deoxy-D-glucose in a porcine experimental model of early acute respiratory distress syndrome. Design:Prospective laboratory investigation. Setting:A university animal research laboratory. Subjects:Seven piglets submitted to experimental ventilator-induced lung injury and five healthy controls. Interventions:Lung injury was induced by lung lavages and 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressure and high inspiratory pressures. All animals were subsequently studied with dynamic PET imaging of [18F]fluoro-2-deoxy-D-glucose. CT scans were acquired at end expiration and end inspiration. Measurements and Main Results:[18F]fluoro-2-deoxy-D-glucose uptake rate was computed for the whole lung, four isogravitational regions, and regions grouping voxels with similar density. Global and intermediate gravitational zones [18F]fluoro-2-deoxy-D-glucose uptakes were higher in ventilator-induced lung injury piglets compared with controls animals. Uptake of normally and poorly aerated regions was also higher in ventilator-induced lung injury piglets compared with control piglets, whereas regions suffering tidal recruitment or tidal hyperinflation had [18F]fluoro-2-deoxy-D-glucose uptakes similar to controls. Conclusions:The present findings suggest that normally and poorly aerated regions—corresponding to intermediate gravitational zones—are the primary targets of the inflammatory process accompanying early experimental ventilator-induced lung injury. This may be attributed to the small volume of the aerated lung, which receives most of ventilation.


Molecular Imaging and Biology | 2010

Evaluation of the Radiocobalt-Labeled [MMA-DOTA-Cys61]-ZHER2:2395-Cys Affibody Molecule for Targeting of HER2-Expressing Tumors

Helena Wållberg; Sara Ahlgren; Charles Widström; Anna Orlova

PurposeImaging using positron emission tomography (PET) in the field of nuclear medicine is becoming increasingly important. The aim of this study was to develop a method for labeling of affibody molecules with radiocobalt for PET applications.ProceduresThe human epidermal growth factor receptors type 2 (HER2) binding affibody molecule DOTA-Z2395-C was radiolabeled with 57Co (used as a surrogate of 55Co). The binding specificity and cellular processing of the labeled compound was studied in vitro followed by in vivo characterization in normal and tumor-bearing mice. Furthermore, a comparative biodistribution study was performed with a 111In-labeled counterpart.ResultsDOTA-Z2395-C was successfully labeled with radiocobalt with nearly quantitative yield. The compound displayed good retention on cells over time and high tumor accumulation of radioactivity in animal studies. Imaging studies showed clear visualization of HER2-positive tumors. Furthermore, the radiocobalt label provided better tumor-to-organ ratios than 111In.ConclusionsRadiocobalt is a promising label for affibody molecules for future PET applications.


The Journal of Nuclear Medicine | 2011

Ventilation Distribution Studies Comparing Technegas and "Gallgas" Using (GaCl3)-Ga-68 as the Label

João Batista Borges; Irina Velikyan; Bengt Långström; Jens Sörensen; Johan Ulin; Enn Maripuu; Mattias Sandström; Charles Widström; Göran Hedenstierna

Ventilation distribution can be assessed by SPECT with Technegas. This study was undertaken in piglets with different degrees of ventilation inhomogeneity to compare PET using 68Ga-labeled pseudogas or “Gallgas” with Technegas. Methods: Twelve piglets were studied in 3 groups: control, lobar obstruction, and diffuse airway obstruction. Two more piglets were assessed for lung volume (functional residual capacity). Results: In controls, SPECT and PET images showed an even distribution of radioactivity. With lobar obstruction, the absence of ventilation of the obstructed lobe was visible with both techniques. In diffuse airway obstruction, SPECT images showed an even distribution of radioactivity, and PET images showed more varied radioactivity over the lung. Conclusion: PET provides detailed ventilation distribution images and a better appreciation of ventilation heterogeneity. Gallgas with PET is a promising new diagnostic tool for the assessment of ventilation distribution.


International Journal of Oncology | 2015

Imaging of CAIX-expressing xenografts in vivo using 99mTc-HEHEHE-ZCAIX : 1 Affibody molecule

Hadis Honarvar; Javad Garousi; Elin Gunneriusson; Ingmarie Höidén-Guthenberg; Mohamed Altai; Charles Widström; Vladimir Tolmachev; Fredrik Y. Frejd

Carbonic anhydrase IX (CAIX) is a transmembrane enzyme involved in regulation of tissue pH balance. In cancer, CAIX expression is associated with tumor hypoxia. CAIX is also overexpressed in renal cell carcinoma and is a molecular target for the therapeutic antibody cG250 (girentuximab). Radionuclide imaging of CAIX expression might be used for identification of patients who may benefit from cG250 therapy and from treatment strategies for hypoxic tumors. Affibody molecules are small (7 kDa) scaffold proteins having a high potential as probes for radionuclide molecular imaging. The aim of the present study was to evaluate feasibility of in vivo imaging of CAIX-expression using radiolabeled Affibody molecules. A histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag-containing CAIX-binding Affibody molecule (HE)3-ZCAIX:1 was labeled with [99mTc(CO)3]+. Its binding properties were evaluated in vitro using CAIX-expressing SK-RC-52 renal carcinoma cells. 99mTc-(HE)3-ZCAIX:1 was evaluated in NMRI nu/nu mice bearing SK-RC-52 xenografts. The in vivo specificity test confirmed CAIX-mediated tumor targeting. 99mTc-(HE)3-ZCAIX:1 cleared rapidly from blood and normal tissues except for kidneys. At optimal time-point (4 h p.i.), the tumor uptake was 9.7±0.7% ID/g, and tumor-to-blood ratio was 53±10. Experimental imaging of CAIX-expressing SK-RC-52 xenografts at 4 h p.i. provided high contrast images. The use of radioiodine label for ZCAIX:1 enabled the reduction of renal uptake, but resulted in significantly lower tumor uptake and tumor-to-blood ratio. Results of the present study suggest that radiolabeled Affibody molecules are promising probes for imaging of CAIX-expression in vivo.


Shock | 2017

Rapid Bolus Administration Does Not Increase the Extravasation Rate of Albumin : A Randomized Controlled Trial in the Endotoxemic Pig

Magnus von Seth; Miklós Lipcsey; Peter Engström; Anders Larsson; Enn Maripuu; Charles Widström; Jan Sjölin

ABSTRACT Some experimental data suggest that rapid bolus administration of albumin causes less plasma-expanding effects than slow, continuous infusion. To determine whether rapid bolus administration, in comparison with slow infusion, results in greater extravasation of albumin in experimental septic shock we performed a randomized controlled trial with 32 endotoxemic pigs. The animals were monitored and ventilated with standard intensive care equipment and given 10 mL × kg−1 5% albumin labeled with Technetium-99m, either as a rapid 15-min bolus (Bolus group, n = 16) or as a 2-h infusion (Infusion group, n = 16). Radioactivity was monitored in plasma, extracellular microdialysate, and urine for 6 h. Physiological parameters were monitored hourly. Radioactivity in the liver, spleen, kidney, and lung was analyzed post mortem. The plasma area under the curve activity0–6 h was 4.4 ± 0.9 × 107 in the Bolus group and 4.4 ± 1.1 × 107 counts × min−1 × mL−1 × h in the Infusion group. Blood hemoglobin levels increased in both groups, suggesting severe capillary leakage. Yet, there were no group differences in albumin radioactivity in plasma, muscle tissue, urine, or in the post-mortem analysis of the organs. Following albumin administration, circulatory and respiratory parameters were similar in the two groups. In conclusion, the present results suggest that albumin might be given as a bolus without leading to increased extravasation of albumin, in contrast to previous animal experiments in rodents.


Intensive Care Medicine Experimental | 2014

0976. Similar effect of albumin given either as a rapid bolus or slow infusion in a large animal model of sepsis

M von Seth; P Engström; Anders Larsson; Enn Maripuu; Charles Widström; Miklós Lipcsey; Jan Sjölin

The strategy of fluid resuscitation in severe sepsis and septic shock is a matter of ever-ongoing debate. Current sepsis guidelines recommend albumin in patients requiring large amounts of crystalloids for circulatory stability. Although the same guidelines also recommend bolus administration of fluid, concerns have been raised that fluid boluses might lead to increased extravasation of albumin leading to sustained tissue edema in patients with sepsis-induced activation of the systemic inflammatory response.

Collaboration


Dive into the Charles Widström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enn Maripuu

Uppsala University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Larsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge