Charlie S. Bristow
Birkbeck, University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charlie S. Bristow.
Geology | 2001
Andrew Carter; Delphine Roques; Charlie S. Bristow; Peter D. Kinny
Results from a zircon U-Pb study of the metamorphic basement of Vietnam reveal that a large part of the continental crust was affected by a short-lived episode of ductile deformation and high-temperature metamorphism between 258 ± 6 Ma and 243 ± 5 Ma. Although coincident with final stages of North-South China collision (Qinling orogenesis), the thermotectonism in Vietnam was caused by accretion of Sibumasu to Indochina–South China. This accretion event (Indosinian orogeny) has regional significance because it contributed to the final stages of North-South China collision, an aspect not explicitly recognized in Qinling orogenic models.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Nicholas Drake; Roger M. Blench; Simon J. Armitage; Charlie S. Bristow; Kevin White
Evidence increasingly suggests that sub-Saharan Africa is at the center of human evolution and understanding routes of dispersal “out of Africa” is thus becoming increasingly important. The Sahara Desert is considered by many to be an obstacle to these dispersals and a Nile corridor route has been proposed to cross it. Here we provide evidence that the Sahara was not an effective barrier and indicate how both animals and humans populated it during past humid phases. Analysis of the zoogeography of the Sahara shows that more animals crossed via this route than used the Nile corridor. Furthermore, many of these species are aquatic. This dispersal was possible because during the Holocene humid period the region contained a series of linked lakes, rivers, and inland deltas comprising a large interlinked waterway, channeling water and animals into and across the Sahara, thus facilitating these dispersals. This system was last active in the early Holocene when many species appear to have occupied the entire Sahara. However, species that require deep water did not reach northern regions because of weak hydrological connections. Human dispersals were influenced by this distribution; Nilo-Saharan speakers hunting aquatic fauna with barbed bone points occupied the southern Sahara, while people hunting Savannah fauna with the bow and arrow spread southward. The dating of lacustrine sediments show that the “green Sahara” also existed during the last interglacial (∼125 ka) and provided green corridors that could have formed dispersal routes at a likely time for the migration of modern humans out of Africa.
Nature | 2000
Charlie S. Bristow; S. D. Bailey; N. Lancaster
Linear sand dunes—dunes that extend parallel to each other rather than in star-like or crescentic forms—are the most abundant type of desert sand dune. But because their development and their internal structure are poorly understood, they are rarely recognized in the rock record. Models of linear dune development have not been able to take into account the sub-surface structure of existing dunes, but have relied instead either on the extrapolation of short-term measurements of winds and sediment transport or on observations of near-surface internal sedimentary structures. From such studies, it has not been clear if linear dunes can migrate laterally. Here we present images produced by ground penetrating radar showing the three-dimensional sedimentary structure of a linear dune in the Namib sand sea, where some of the worlds largest linear dunes are situated. These profiles show clear evidence for lateral migration in a linear dune. Moreover, the migration of a sinuous crest-line along the dune produces divergent sets of cross-stratification, which can become stacked as the dune height increases, and large linear dunes can support superimposed dunes that produce stacked sets of trough cross-stratification. These clear structural signatures of linear dunes should facilitate their recognition in geological records.
Journal of Sedimentary Research | 2003
James L. Best; Philip Ashworth; Charlie S. Bristow; Julie E. Roden
The three-dimensional subsurface alluvial architecture of a large (approximately 3 km long, 1 km wide, 12 m high), mid-channel sand braid bar in the Jamuna River, Bangladesh is described. Evolution of the bar and its depositional characteristics are assessed from a unique combination of ground-penetrating radar surveys, vibracoring, and trenching that are allied to a series of bathymetric surveys taken during growth of the bar over a 29-month period. This methodology permits identification of the formative processes of different packages of braid-bar sedimentation and provides a facies model for deposition within the entire bar. Mid-channel bar growth occurred in a region of flow expansion and was probably initiated by the stalling and amalgamation of large dunes. These dunes created a bar-core that grew by (i) propagation of a downstream-accreting slipface, (ii) vertical accretion through stacking of dunes on both bar stoss and top, and (iii) lateral accretion on the bar margins during recession of the flood hydrograph. Braid-bar sedimentation is dominated by four radar facies: (1) large-scale, predominantly planar, dipping reflections interpreted as cross-stratification, up to 8 m in height and greater than 100 m in width, that is produced by the cross-channel migration of bar margins, (2) medium-scale, trough-shaped and planar discontinuous reflections interpreted as cross-stratification up to 4 m in height and 300 m wide, that is deposited from large, sinuous-crested sand dunes, (3) discontinuous reflections, up to 2 m high and 30 m wide, interpreted as small-scale trough cross-stratification, that is the product of smaller sinuous-crested dunes, and (4) high-amplitude, undulating reflections interpreted as mud drapes, deposited in regions of slow flow, often in the bar-tail region at low stage. Dune size decreases vertically within the bar, in response to the progressively shallower flows on the emerging bar top. Later evolution of the bar, as one anabranch channel became dominant, created a 1.5 km extension to the bar tail with an 8 m high, angle-of-repose, bar-margin slipface, formed by flow transverse to the long axis of the bar. Seven styles of deposition can be defined that constitute the alluvial architecture: bar-margin slipface, vertical accretion in channel, bar-top vertical accretion, upstream accretion, lateral accretion, downstream accretion, and low-stage mud drapes. A model of braid-bar sedimentation is presented that shares many similarities with previous studies of smaller sand-bed braid bars with the dominance of dune-scale cross-stratification, the presence of large-scale, bar-margin cross-stratification, and the occurrence of lateral, vertical, upstream, and downstream accretion. However, the contribution of the bar-margin facies to the preserved stratigraphy highlighted herein may have been underestimated in previous models of braided rivers in which the braid bars were migrating slowly. This study suggests a scale invariance in several aspects of mid-channel bar sedimentation in sand-bed rivers and proposes a model of braid-bar sedimentation that may be applied widely within studies of braided alluvial architecture.
Geological Society, London, Special Publications | 2003
Harry M. Jol; Charlie S. Bristow
Abstract Within sedimentological studies, ground penetrating radar (GPR) is being used with increasing frequency because it yields images of the shallow subsurface that cannot be achieved by any other non-destructive method. The purpose of this paper is to provide an introduction to the collection, processing and interpretation of GPR data so that future sedimentary studies can be improved. With GPR equipment now being lightweight, robust and portable, proper data collection and survey design methods need to be followed in order to acquire high resolution, subsurface digital data. Various factors are discussed including: reflection profiling, velocity soundings, test surveys, topography, logistics, data quality and extreme environments. Basic data processing and visualization are then reviewed, followed by a discussion on GPR interpretation strategies including a background to radar stratigraphy. For the sedimentary geologist or geomorphologist, GPR offers unique data of the shallow subsurface including stratigraphy, geometry, architecture and structure.
Geophysical Research Letters | 2006
Richard Washington; Martin C. Todd; G. Lizcano; Ina Tegen; Cyrille Flamant; Ilan Koren; P. Ginoux; Sebastian Engelstaedter; Charlie S. Bristow; Charles S. Zender; A. S. Goudie; Andrew Warren; Joseph M. Prospero
The Bodele Depression, Chad is the planets largest single source of dust. Deflation from the Bodele could be seen as a simple coincidence of two key prerequisites: strong surface winds and a large source of suitable sediment. But here we hypothesise that long term links between topography, winds, deflation and dust ensure the maintenance of the dust source such that these two apparently coincidental key ingredients are connected by land-atmosphere processes with topography acting as the overall controlling agent. We use a variety of observational and numerical techniques, including a regional climate model, to show that: 1) contemporary deflation from the Bodele is delineated by topography and a surface wind stress maximum; 2) the Tibesti and Ennedi mountains play a key role in the generation of the erosive winds in the form of the Bodele Low Level Jet (LLJ); 3) enhanced deflation from a stronger Bodele LLJ during drier phases, for example, the Last Glacial Maximum, was probably sufficient to create the shallow lake in which diatoms lived during wetter phases, such as the Holocene pluvial. Winds may therefore have helped to create the depression in which erodible diatom material accumulated. Instead of a simple coincidence of nature, dust from the worlds largest source may result from the operation of long term processes on paleo timescales which have led to ideal conditions for dust generation in the worlds largest dust source. Similar processes plausibly operate in other dust hotspots in topographic depressions.
Geology | 2007
Charlie S. Bristow; G.A.T. Duller; Nicholas Lancaster
Bristow, C. S., Duller, G. A. T., Lancaster, N. (2007). Age and dynamics of linear dunes in the Namib Desert. Geology, 35(6), 555-558. Sponsorship: American Chemical Society
Geophysical Research Letters | 2010
Charlie S. Bristow; Karen A. Hudson-Edwards; Adrian Chappell
Atmospheric mineral dust plays a vital role in Earths climate and biogeochemical cycles. The Bodele Depression in Chad has been identified as the single biggest source of atmospheric mineral dust on Earth. Dust eroded from the Bodele is blown across the Atlantic Ocean towards South America. The mineral dust contains micronutrients such as Fe and P that have the potential to act as a fertilizer, increasing primary productivity in the Amazon rain forest as well as the equatorial Atlantic Ocean, and thus leading to N2 fixation and CO2 drawdown. We present the results of chemical analysis of 28 dust samples collected from the source area, which indicate that up to 6.5 Tg of Fe and 0.12 Tg of P are exported from the Bodele Depression every year. This suggests that the Bodele may be a more significant micronutrient supplier than previously proposed.
Water Resources Research | 2008
J.M. McArthur; P. Ravenscroft; Dm Banerjee; J. Milsom; Karen A. Hudson-Edwards; Saikat Sengupta; Charlie S. Bristow; A. Sarkar; S. Tonkin; R. Purohit
In the Bengal Basin, the land surface exposed during the last lowstand of sea level around 20 ka, and now buried by Holocene sediment, is capped by an effectively impermeable clay paleosol that we term the Last Glacial Maximum paleosol (LGMP). The paleosol strongly affects groundwater flow and controls the location of arsenic pollution in the shallow aquifers of our study site in southern West Bengal and, by implication, in shallow aquifers across the Bengal Basin and As-polluted deltaic aquifers worldwide. The presence of the LGMP defines paleointerfluvial areas; it is absent from paleochannel areas. A paleosol model of pollution proposed here predicts that groundwater in paleochannels is polluted by arsenic, while that beneath paleointerfluvial areas is not: paleointerfluvial aquifers are unpolluted because they are protected by the LGMP from downward migration of arsenic and from downward migration of organic matter that drives As-pollution via reductive dissolution of As-bearing iron oxyhydroxides. Horizontal groundwater flow carries arsenic from paleochannels toward paleointerfluvial aquifers, in which sorption of arsenic minimizes the risk of pollution.
Journal of the Geological Society | 2005
Charlie S. Bristow; Nicholas Lancaster; G.A.T. Duller
Ground penetrating radar (GPR) profiles across a complex linear dune in the Namib Sand Sea have been used to image sets of cross-stratification and their bounding surfaces. A combination of radar facies analysis and radar stratigraphy has been used to interpret the radar profiles and define a relative chronology. Thick sets of cross-stratification indicate when the dune was most active, whereas thin sets of cross-stratification are interpreted to indicate the increased prevalence of wind reversals and lower rates of dune migration, with bounding surfaces formed during periods of stabilization, non-deposition or erosion. A drilling and dating campaign was designed on the basis of the dune stratigraphy as defined by the GPR survey. Sampling was targeted at large sets of cross-stratification formed when the dunes were most active, and avoiding bounding surfaces formed when the dune was stable or even eroded. The results from optical dating give ages between 0.34 ± 0.02 ka and 1.57 ± 0.07 ka, indicating a time-averaged dune migration rate of 0.12 m a−1 over the past 1600 years.