Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlie W. Lees is active.

Publication


Featured researches published by Charlie W. Lees.


Nature Genetics | 2010

Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci

Andre Franke; Dermot McGovern; Jeffrey C. Barrett; Kai Wang; Graham L. Radford-Smith; Tariq Ahmad; Charlie W. Lees; Tobias Balschun; James C. Lee; Rebecca L. Roberts; Carl A. Anderson; Joshua C. Bis; Suzanne Bumpstead; David Ellinghaus; Eleonora M. Festen; Michel Georges; Todd Green; Talin Haritunians; Luke Jostins; Anna Latiano; Christopher G. Mathew; Grant W. Montgomery; Natalie J. Prescott; Soumya Raychaudhuri; Jerome I. Rotter; Philip Schumm; Yashoda Sharma; Lisa A. Simms; Kent D. Taylor; David C. Whiteman

We undertook a meta-analysis of six Crohns disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10−8). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohns disease.


Nature Genetics | 2007

Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility.

Miles Parkes; Jeffrey C. Barrett; Natalie J. Prescott; Mark Tremelling; Carl A. Anderson; Sheila Fisher; Roland G. Roberts; Elaine R. Nimmo; Fraser Cummings; Dianne Soars; Hazel E. Drummond; Charlie W. Lees; Saud A Khawaja; Richard Bagnall; D. A. Burke; Ce Todhunter; Tariq Ahmad; Clive M. Onnie; Wendy L. McArdle; David P. Strachan; Graeme Bethel; Claire Bryan; Cathryn M. Lewis; Panos Deloukas; Alastair Forbes; Jeremy Sanderson; Derek P. Jewell; Jack Satsangi; John C. Mansfield; Lon R. Cardon

A genome-wide association scan in individuals with Crohns disease by the Wellcome Trust Case Control Consortium detected strong association at four novel loci. We tested 37 SNPs from these and other loci for association in an independent case-control sample. We obtained replication for the autophagy-inducing IRGM gene on chromosome 5q33.1 (replication P = 6.6 × 10−4, combined P = 2.1 × 10−10) and for nine other loci, including NKX2-3, PTPN2 and gene deserts on chromosomes 1q and 5p13.


Gut | 2011

Guidelines for the management of inflammatory bowel disease in adults

Craig Mowat; Andrew Cole; Al Windsor; Tariq Ahmad; Ian D. Arnott; Richard Driscoll; Sally G. Mitton; Timothy R. Orchard; Matt Rutter; Lisa Younge; Charlie W. Lees; Gwo-Tzer Ho; Jack Satsangi; Stuart Bloom

The management of inflammatory bowel disease represents a key component of clinical practice for members of the British Society of Gastroenterology (BSG). There has been considerable progress in management strategies affecting all aspects of clinical care since the publication of previous BSG guidelines in 2004, necessitating the present revision. Key components of the present document worthy of attention as having been subject to re-assessment, and revision, and having direct impact on practice include: The data generated by the nationwide audits of inflammatory bowel disease (IBD) management in the UK in 2006, and 2008. The publication of ‘Quality Care: service standards for the healthcare of people with IBD’ in 2009. The introduction of the Montreal classification for Crohns disease and ulcerative colitis. The revision of recommendations for the use of immunosuppressive therapy. The detailed analysis, guidelines and recommendations for the safe and appropriate use of biological therapies in Crohns disease and ulcerative colitis. The reassessment of the role of surgery in disease management, with emphasis on the importance of multi-disciplinary decision-making in complex cases. The availablity of new data on the role of reconstructive surgery in ulcerative colitis. The cross-referencing to revised guidelines for colonoscopic surveillance, for the management of metabolic bone disease, and for the care of children with inflammatory bowel disease. Use of the BSG discussion forum available on the BSG website to enable ongoing feedback on the published document http://www.bsg.org.uk/forum (accessed Oct 2010). The present document is intended primarily for the use of clinicians in the United Kingdom, and serves to replace the previous BSG guidelines in IBD, while complementing recent consensus statements published by the European Crohns and Colitis Organisation (ECCO) https://www.ecco-ibd.eu/index.php (accessed Oct 2010).


Journal of Crohns & Colitis | 2009

Second European evidence-based consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease

Jean-François Rahier; Fernando Magro; Cândida Abreu; Alessandro Armuzzi; Shomron Ben-Horin; Yehuda Chowers; Mario Cottone; L. de Ridder; Glen A. Doherty; Robert Ehehalt; Maria Esteve; K.H. Katsanos; Charlie W. Lees; Eithne MacMahon; Tom G. Moreels; W. Reinisch; Herbert Tilg; Lydjie Tremblay; Gigi Veereman-Wauters; N. Viget; Yazdan Yazdanpanah; Rami Eliakim; Colombel Jf

The treatment of inflammatory bowel disease (IBD) has been revolutionised over the past decade by the increasing use of immunomodulators, mainly azathioprine (AZA)/6-mercaptopurine (6-MP) and methotrexate (MTX), together with the advent of biological therapy. Immunomodulators are being used more often and earlier in the course of the disease.1 The introduction of biologic agents, especially inhibitors of the key proinflammatory cytokine, tumor necrosis factor alpha (TNF-α) initiated a new therapeutic era, whose use has grown continuously since their introduction in 1998.2 With such immunomodulation, the potential for opportunistic infection is a key safety concern for patients with IBD. Opportunistic infections pose particular problems for the clinician: they are often difficult to recognise and are associated with appreciable morbidity or mortality, because they are potentially serious and hard to treat effectively. Enhancing awareness and improving the knowledge of gastroenterologists about opportunistic infections are important elements to optimise patient outcomes through the development of preventive or early diagnostic strategies. A long list of opportunistic infections has been described in patients with IBD. Many questions remain unanswered, not only concerning the need for screening, preventive measures or the best diagnostic approach, but also on appropriate treatment and management of immunomodulator therapy once infection occurs. This led the European Crohns and Colitis Organisation (ECCO) to establish a Consensus meeting on opportunistic infections in IBD. The formal process of a Consensus meeting has been described,3 but the purpose is to quantify expert opinion in the context of a systematic review of existing evidence. To organise the work, infections were classified into six major topics (see plan). Specific questions were asked for each infectious agent. The different topics were distributed to working groups that comprised junior and senior gastroenterologists with infectious disease experts. Each group performed a systematic review of the literature and answered …


Nature Genetics | 2008

Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease

Sheila Fisher; Mark Tremelling; Carl A. Anderson; Rhian Gwilliam; Suzannah Bumpstead; Natalie J. Prescott; Elaine R. Nimmo; Dunecan Massey; Carlo Berzuini; Christopher M. Johnson; Jeffrey C. Barrett; Fraser Cummings; Hazel E. Drummond; Charlie W. Lees; Clive M. Onnie; Catherine Hanson; Katarzyna Blaszczyk; Michael Inouye; Philip Ewels; Radhi Ravindrarajah; Andrew Keniry; Sarah Hunt; Martyn J. Carter; Nicholas J. Watkins; Willem H. Ouwehand; Cathryn M. Lewis; L R Cardon; Alan J. Lobo; Alastair Forbes; Jeremy Sanderson

We report results of a nonsynonymous SNP scan for ulcerative colitis and identify a previously unknown susceptibility locus at ECM1. We also show that several risk loci are common to ulcerative colitis and Crohns disease (IL23R, IL12B, HLA, NKX2-3 and MST1), whereas autophagy genes ATG16L1 and IRGM, along with NOD2 (also known as CARD15), are specific for Crohns disease. These data provide the first detailed illustration of the genetic relationship between these common inflammatory bowel diseases.


The Lancet | 2016

Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study

Isabelle Cleynen; Gabrielle Boucher; Luke Jostins; L. Philip Schumm; Sebastian Zeissig; Tariq Ahmad; Vibeke Andersen; Jane M. Andrews; Vito Annese; Stephan Brand; Steven R. Brant; Judy H. Cho; Mark J. Daly; Marla Dubinsky; Richard H. Duerr; Lynnette R. Ferguson; Andre Franke; Richard B. Gearry; Philippe Goyette; Hakon Hakonarson; Jonas Halfvarson; Johannes R. Hov; Hailang Huang; Nicholas A. Kennedy; Ian C. Lawrance; James C. Lee; Jack Satsangi; Stephan Schreiber; Emilie Théâtre; Andrea E. van der Meulen-de Jong

Summary Background Crohns disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohns disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34 819 patients (19 713 with Crohns disease, 14 683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype–phenotype associations across 156 154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohns disease, ileal Crohns disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. Findings After quality control, the primary analysis included 29 838 patients (16 902 with Crohns disease, 12 597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with disease subphenotype (p=1·65 × 10−78), even after exclusion of NOD2, MHC, and 3p21 (p=9·23 × 10−18). Predictive models based on the genetic risk score strongly distinguished colonic from ileal Crohns disease. Our genetic risk score could also identify a small number of patients with discrepant genetic risk profiles who were significantly more likely to have a revised diagnosis after follow-up (p=6·8 × 10−4). Interpretation Our data support a continuum of disorders within inflammatory bowel disease, much better explained by three groups (ileal Crohns disease, colonic Crohns disease, and ulcerative colitis) than by Crohns disease and ulcerative colitis as currently defined. Disease location is an intrinsic aspect of a patients disease, in part genetically determined, and the major driver to changes in disease behaviour over time. Funding International Inflammatory Bowel Disease Genetics Consortium members funding sources (see Acknowledgments for full list).


Gastroenterology | 2009

Investigation of Crohn's Disease Risk Loci in Ulcerative Colitis Further Defines Their Molecular Relationship

Carl A. Anderson; Dunecan Massey; Jeffrey C. Barrett; Natalie J. Prescott; Mark Tremelling; Sheila Fisher; Rhian Gwilliam; Jemima Jacob; Elaine R. Nimmo; Hazel E. Drummond; Charlie W. Lees; Clive M. Onnie; Catherine Hanson; Katarzyna Blaszczyk; Radhi Ravindrarajah; Sarah Hunt; Dhiraj Varma; Naomi Hammond; Gregory Lewis; Heather Attlesey; Nicholas A. Watkins; Willem H. Ouwehand; David P. Strachan; Wendy L. McArdle; Cathryn M. Lewis; Alan J. Lobo; Jeremy Sanderson; Derek P. Jewell; Panos Deloukas; John C. Mansfield

BACKGROUND & AIMS Identifying shared and disease-specific susceptibility loci for Crohns disease (CD) and ulcerative colitis (UC) would help define the biologic relationship between the inflammatory bowel diseases. More than 30 CD susceptibility loci have been identified. These represent important candidate susceptibility loci for UC. Loci discovered by the index genome scans in CD have previously been tested for association with UC, but those identified in the recent meta-analysis await such investigation. Furthermore, the recently identified UC locus at ECM1 requires formal testing for association with CD. METHODS We analyzed 45 single nucleotide polymorphisms, tagging 29 of the loci recently associated with CD in 2527 UC cases and 4070 population controls. We also genotyped the UC-associated ECM1 variant rs11205387 in 1560 CD patients and 3028 controls. RESULTS Nine regions showed association with UC at a threshold corrected for the 29 loci tested (P < .0017). The strongest association (P = 4.13 x 10(-8); odds ratio = 1.27) was identified with a 170-kilobase region on chromosome 1q32 that contains 3 genes. We also found association with JAK2 and replicated a recently reported association with STAT3, further implicating the role of this signaling pathway in inflammatory bowel disease. Additional novel UC susceptibility genes were LYRM4 and CDKAL1. Twenty of the loci were not associated with UC, and several appear to be specific to CD. ECM1 variation was not associated with CD. CONCLUSIONS Collectively, these data help define the genetic relationship between CD and UC and characterize common, as well as disease-specific mechanisms of pathogenesis.


Gut | 2008

Regional Variation in Gene Expression in the Healthy Colon is Dysregulated in Ulcerative Colitis

Colin L. Noble; Alexander R. Abbas; Jennine Cornelius; Charlie W. Lees; G. T. Ho; Karen Toy; Zora Modrusan; Navneet Pal; Fiona Zhong; Sreedevi Chalasani; Hilary Clark; Ian D. Arnott; Ian D. Penman; Jack Satsangi; Lauri Diehl

Objective: To investigate differential intestinal gene expression in patients with ulcerative colitis and in controls. Design: Genome-wide expression study (41 058 expression sequence tags, 215 biopsies). Setting: Western General Hospital, Edinburgh, UK, and Genentech, San Francisco, USA. Patients: 67 patients with ulcerative colitis and 31 control subjects (23 normal subjects and 8 patients with inflamed non-inflammatory bowel disease biopsies). Interventions: Paired endoscopic biopsies were taken from 5 specific anatomical locations for RNA extraction and histology. The Agilent microarray platform was used and confirmation of results was undertaken by real time polymerase chain reaction and immunohistochemistry. Results: In healthy control biopsies, cluster analysis showed differences in gene expression between the right and left colon. (χ2 = 25.1, p<0.0001). Developmental genes, homeobox protein A13 (HOXA13), (p = 2.3×10−16), HOXB13 (p<1×10−45), glioma-associated oncogene 1 (GLI1) (p = 4.0×10−24), and GLI3 (p = 2.1×10−28) primarily drove this separation. When all ulcerative colitis biopsies and control biopsies were compared, 143 sequences had a fold change of >1.5 in the ulcerative colitis biopsies (0.01>p>10−45) and 54 sequences had a fold change of <−1.5 (0.01>p>10−20). Differentially upregulated genes in ulcerative colitis included serum amyloid A1 (SAA1) (p<10−45) the alpha defensins 5 and 6 (DEFA5 and 6) (p = 0.00003 and p = 6.95×10−7, respectively), matrix metalloproteinase 3 (MMP3) (p = 5.6×10−10) and MMP7 (p = 2.3×10−7). Increased DEFA5 and 6 expression was further characterised to Paneth cell metaplasia by immunohistochemistry and in situ hybridisation. Sub-analysis of the inflammatory bowel disease 2 (IBD2) and IBD5 loci, and the ATP-binding cassette (ABC) transporter genes revealed a number of differentially regulated genes in the ulcerative colitis biopsies. Conclusions: Key findings are the expression gradient in the healthy adult colon and the involvement of novel gene families, as well as established candidate genes in the pathogenesis of ulcerative colitis.


Inflammatory Bowel Diseases | 2011

Genetics of ulcerative colitis.

Alexandra I. Thompson; Charlie W. Lees

&NA; Ulcerative colitis (UC) and Crohns disease (CD) are related polygenic inflammatory bowel diseases (IBDs), with distinct and overlapping susceptibility loci. Recently, hypothesis‐free genome‐wide association (GWA) studies have revolutionized the field of complex disease genetics. Substantial advances have been achieved in defining the genetic architecture of IBD. To date, over 60 published IBD susceptibility loci have been discovered and replicated, of which approximately a third are associated with both UC and CD, although 21 are specific to UC and 23 to CD. In CD, the breakthrough identification of NOD2 as a susceptibility gene was followed by a rapid phase of gene discovery from GWA studies between 2006 and 2008. Progress in UC was slower; however, by initially testing hits for CD in UC, and later scanning larger UC cohorts, significant new loci for UC have been discovered, with exciting novel insights into disease pathogenesis. Notably, genes implicated in mucosal barrier function (ECM1, CDH1, HNF4&agr;, and laminin B1) confer risk of UC; furthermore, E‐cadherin is the first genetic correlation between colorectal cancer and UC. Impaired IL10 signaling has reemerged as a key pathway in intestinal inflammation, and is perhaps the most amenable to therapeutic intervention in UC. Collaborative international efforts with large meta‐analyses of GWA studies and replication will yield many new UC genes. Furthermore, a large effort is required to characterize the loci found. Fine‐mapping, deep resequencing, and functional studies will be critical to translating these gene discoveries into pathogenic insights, and ultimately into clinical insights and novel therapeutics. (Inflamm Bowel Dis 2011;)


PLOS ONE | 2014

The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing

Nicholas A. Kennedy; Alan W. Walker; Susan H. Berry; Sylvia H. Duncan; Freda M Farquarson; Petra Louis; John M. Thomson; Jack Satsangi; Harry J. Flint; Julian Parkhill; Charlie W. Lees; Georgina L. Hold

Introduction Determining bacterial community structure in fecal samples through DNA sequencing is an important facet of intestinal health research. The impact of different commercially available DNA extraction kits upon bacterial community structures has received relatively little attention. The aim of this study was to analyze bacterial communities in volunteer and inflammatory bowel disease (IBD) patient fecal samples extracted using widely used DNA extraction kits in established gastrointestinal research laboratories. Methods Fecal samples from two healthy volunteers (H3 and H4) and two relapsing IBD patients (I1 and I2) were investigated. DNA extraction was undertaken using MoBio Powersoil and MP Biomedicals FastDNA SPIN Kit for Soil DNA extraction kits. PCR amplification for pyrosequencing of bacterial 16S rRNA genes was performed in both laboratories on all samples. Hierarchical clustering of sequencing data was done using the Yue and Clayton similarity coefficient. Results DNA extracted using the FastDNA kit and the MoBio kit gave median DNA concentrations of 475 (interquartile range 228-561) and 22 (IQR 9-36) ng/µL respectively (p<0.0001). Hierarchical clustering of sequence data by Yue and Clayton coefficient revealed four clusters. Samples from individuals H3 and I2 clustered by patient; however, samples from patient I1 extracted with the MoBio kit clustered with samples from patient H4 rather than the other I1 samples. Linear modelling on relative abundance of common bacterial families revealed significant differences between kits; samples extracted with MoBio Powersoil showed significantly increased Bacteroidaceae, Ruminococcaceae and Porphyromonadaceae, and lower Enterobacteriaceae, Lachnospiraceae, Clostridiaceae, and Erysipelotrichaceae (p<0.05). Conclusion This study demonstrates significant differences in DNA yield and bacterial DNA composition when comparing DNA extracted from the same fecal sample with different extraction kits. This highlights the importance of ensuring that samples in a study are prepared with the same method, and the need for caution when cross-comparing studies that use different methods.

Collaboration


Dive into the Charlie W. Lees's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian D. Arnott

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar

Miles Parkes

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gwo-Tzer Ho

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar

Carl A. Anderson

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge