Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotta Wallinder is active.

Publication


Featured researches published by Charlotta Wallinder.


Current Opinion in Pharmacology | 2011

Non-peptide AT2-receptor agonists

U. Muscha Steckelings; Mats Larhed; Anders Hallberg; Robert E. Widdop; Emma S. Jones; Charlotta Wallinder; Pawel Namsolleck; Björn Dahlöf; Thomas Unger

The renin-angiotensin-system harbours two main receptor subtypes binding angiotensin II which are the AT1-receptor and the AT2-receptor. While the AT1-receptor has been a drug target in cardiovascular disease for many years, the AT2-receptor was only a subject of academic interest. This has changed with the design and synthesis of a first non-peptide, orally active AT2-receptor agonist, compound 21 (C21). First data using C21 revealed tissue protective effects and functional improvement after myocardial infarction and in hypertension-induced end organ damage, notably in a blood-pressure independent way. In all of these models, AT2-receptor mediated anti-inflammation seemed an important underlying mechanism. C21 is awaited to enter a phase I clinical study in 2011.


American Journal of Physiology-endocrinology and Metabolism | 2013

Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats.

Michael Shum; Sandra Pinard; Marie-Odile Guimond; Sébastien M. Labbé; Claude Roberge; Jean-Patrice Baillargeon; Marie-France Langlois; Mathias Alterman; Charlotta Wallinder; Anders Hallberg; André C. Carpentier; Nicole Gallo-Payet

This study was aimed at establishing whether specific activation of angiotensin II (ANG II) type 2 receptor (AT2R) modulates adipocyte differentiation and function. In primary cultures of subcutaneous (SC) and retroperitoneal (RET) preadipocytes, both AT2R and AT1R were expressed at the mRNA and protein level. Cells were stimulated with ANG II or the AT2R agonist C21/M24, alone or in the presence of the AT1R antagonist losartan or the AT2R antagonist PD123,319. During differentiation, C21/M24 increased PPARγ expression in both RET and SC preadipocytes while the number of small lipid droplets and lipid accumulation solely increased in SC preadipocytes. In mature adipocytes, C21/M24 decreased the mean size of large lipid droplets. Upon abolishment of AT2R expression using AT2R-targeted shRNAs, expressions of AT2R, aP2, and PPARγ remained very low, and cells were unable to differentiate. In Wistar rats fed a 6-wk high-fat/high-fructose (HFHF) diet, a significant shift toward larger adipocytes was observed in RET and SC adipose tissue depots. C21/M24 treatments for 6 wk restored normal adipocyte size distribution in both these tissue depots. Moreover, C21/M24 and losartan decreased hyperinsulinemia and improved insulin sensitivity impaired by HFHF diet. A strong correlation between adipocyte size area and glucose infusion rate during euglycemic-hyperinsulinemic clamp was observed. These results indicate that AT2R is involved in early adipocyte differentiation, while in mature adipocytes and in a model of insulin resistance AT2R activation restores normal adipocyte morphology and improves insulin sensitivity.


Journal of Medicinal Chemistry | 2012

From the First Selective Non-Peptide AT(2) Receptor Agonist to Structurally Related Antagonists

Murugaiah M. S. Andappan; Xiongyu Wu; Charlotta Wallinder; A. K. Mahalingam; Yiqian Wan; Christian Sköld; Milad Botros; Marie-Odile Guimond; Advait A. Joshi; Fred Nyberg; Nicole Gallo-Payet; Anders Hallberg; Mathias Alterman

A para substitution pattern of the phenyl ring is a characteristic feature of the first reported selective AT(2) receptor agonist M024/C21 (1) and all the nonpeptidic AT(2) receptor agonists described so far. Two series of compounds structurally related to 1 but with a meta substitution pattern have now been synthesized and biologically evaluated for their affinity to the AT(1) and AT(2) receptors. A high AT(2)/AT(1) receptor selectivity was obtained with all 41 compounds synthesized, and the majority exhibited K(i) ranging from 2 to 100 nM. Five compounds were evaluated for their functional activity at the AT(2) receptor, applying a neurite outgrowth assay in NG108-15 cells. Notably, four of the five compounds, with representatives from both series, acted as potent AT(2) receptor antagonists. These compounds were found to be considerably more effective than PD 123,319, the standard AT(2) receptor antagonist used in most laboratories. No AT(2) receptor antagonists were previously reported among the derivatives with a para substitution pattern. Hence, by a minor modification of the agonist 1 it could be transformed into the antagonist, compound 38. These compounds should serve as valuable tools in the assessment of the role of the AT(2) receptor in more complex physiological models.


Bioorganic & Medicinal Chemistry | 2008

Selective angiotensin II AT2 receptor agonists: Benzamide structure-activity relationships.

Charlotta Wallinder; Milad Botros; Ulrika Rosenström; Marie-Odile Guimond; Hélène Beaudry; Fred Nyberg; Nicole Gallo-Payet; Anders Hallberg; Mathias Alterman

In the investigation of the structure-activity relationship of nonpeptide AT(2) receptor agonists, a series of substituted benzamide analogues of the selective nonpeptide AT(2) receptor agonist M024 have been synthesised. In a second series, the biphenyl scaffold was compared to the thienylphenyl scaffold and the impact of the isobutyl substituent and its position on AT(1)/AT(2) receptor selectivity was also investigated. Both series included several compounds with high affinity and selectivity for the AT(2) receptor. Three of the compounds were also proven to function as agonists at the AT(2) receptor, as deduced from a neurite outgrowth assay, conducted in NG108-15 cells.


Journal of Organic Chemistry | 2013

One-Pot, Two-Step, Microwave-Assisted Palladium-Catalyzed Conversion of Aryl Alcohols to Aryl Fluorides via Aryl Nonaflates

Johan Wannberg; Charlotta Wallinder; Meltem Ünlüsoy; Christian Sköld; Mats Larhed

A convenient procedure for converting aryl alcohols to aryl fluorides via aryl nonafluorobutylsulfonates (ArONf) is presented. Moderate to good one-pot, two-step yields were achieved by this nonaflation and microwave-assisted, palladium-catalyzed fluorination sequence. The reductive elimination step was investigated by DFT calculations to compare fluorination with chlorination, proving a larger thermodynamic driving force for the aryl fluoride product. Finally, a key aryl fluoride intermediate for the synthesis of a potent HCV NS3 protease inhibitor was smoothly prepared with the novel protocol.


Frontiers in Endocrinology | 2011

Angiotensin II, a Neuropeptide at the Frontier between Endocrinology and Neuroscience: Is There a Link between the Angiotensin II Type 2 Receptor and Alzheimer’s Disease?

Nicole Gallo-Payet; Marie-Odile Guimond; Lyne Bilodeau; Charlotta Wallinder; Mathias Alterman; Anders Hallberg

Amyloid-β peptide deposition, abnormal hyperphosphorylation of tau, as well as inflammation and vascular damage, are associated with the development of Alzheimer’s disease (AD). Angiotensin II (Ang II) is a peripheral hormone, as well as a neuropeptide, which binds two major receptors, namely the Ang II type 1 receptor (AT1R) and the type 2 receptor (AT2R). Activation of the AT2R counteracts most of the AT1R-mediated actions, promoting vasodilation, decreasing the expression of pro-inflammatory cytokines, both in the brain and in the cardiovascular system. There is evidence that treatment with AT1R blockers (ARBs) attenuates learning and memory deficits. Studies suggest that the therapeutic effects of ARBs may reflect this unopposed activation of the AT2R in addition to the inhibition of the AT1R. Within the context of AD, modulation of AT2R signaling could improve cognitive performance not only through its action on blood flow/brain microcirculation but also through more specific effects on neurons. This review summarizes the current state of knowledge and potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT2R activation by non-peptide and highly selective agonists, acting on neuronal plasticity, could represent new pharmacological tools that may help improve impaired cognitive performance in AD and other neurological cognitive disorders.


European Journal of Pharmacology | 2013

Comparative functional properties of two structurally similar selective nonpeptide drug-like ligands for the angiotensin II type-2 (AT2) receptor. Effects on neurite outgrowth in NG108-15 cells

Marie-Odile Guimond; Charlotta Wallinder; Mathias Alterman; Anders Hallberg; Nicole Gallo-Payet

There is increasing evidence that angiotensin II (Ang II), through binding to the type 2 (AT(2)) receptor may have beneficial effects in various physiological and pathological situations. However, specific action presumably mediated by the angiotensin AT(2) receptor has been hampered by the absence of appropriate selective ligands. The aim of this study was to compare the biological properties of two related and selective drug-like nonpeptide AT(2) ligands, namely an agonist called M024 (also known as Compound 21) and a new ligand, presumably an antagonist, C38/M132, (originally called C38). Properties of the compounds were investigated in NG108-15 cells expressing angiotensin AT(2) receptor and known to develop neurite outgrowth upon Ang II stimulation. NG108-15 cells stimulated for three days with C21/M024 (0.1 or 100nM) exhibited the same neurite outgrowth as cells stimulated with Ang II (100nM) while co-incubation of Ang II or C21/M024 with C38/M132 (10 or 100nM) inhibited their effects, similarly to the angiotensin AT(2) receptor antagonist, PD123319 (10μM). As Ang II, C21/M024 induced a Rap1-dependent activation of p42/p44(mapk) whereas preincubation of cells with C38/M132 inhibited p42/p44(mapk) and Rap1 activation induced by Ang II. Three-day treatment with C21/M024 or Ang II decreased cell number in culture, an effect that was rescued by preincubation with C38/M132. Taken together, these results indicate that the nonpeptide ligand C21/M024 is a potent angiotensin AT(2) receptor agonist while C38/M132 acts as an antagonist. These selective nonpeptide angiotensin AT(2) ligands may represent unique and long-awaited tools for the pursuit of in vivo studies.


Bioorganic & Medicinal Chemistry | 2010

Selective angiotensin II AT(2) receptor agonists with reduced CYP 450 inhibition.

A. K. Mahalingam; Yiqian Wan; A. M. S. Murugaiah; Charlotta Wallinder; Xiongyu Wu; Bianca Plouffe; Milad Botros; Fred Nyberg; Anders Hallberg; Nicole Gallo-Payet; Mathias Alterman

Structural alterations to the benzylic position of the first drug-like selective angiotensin II AT(2) receptor agonist (1) have been performed, with the emphasis to reduce the CYP 450 inhibitory property of the initial structure. The imidazole moiety, responsible for the CYP 450 inhibitory effect in 1, was replaced with various heterocycles. In addition, the modes of attachment of the heterocycles, that is, carbon versus nitrogen attachment, and introduction of carbonyl functionalities to the benzylic position have been evaluated. In all the three series, AT(2) receptor ligands with affinity in the lower nanomolar range were identified. None of the analogues, regardless of the substituents, exhibited any affinity for the AT(1) receptor. Compounds with substantially reduced inhibition of the CYP 450 enzymes were obtained. Among them the compound 60 was found to induce neurite elongation in NG 108-15 cells and served as potent AT(2) selective agonist.


Current Hypertension Reviews | 2012

AT2 Receptor Agonists : Exploiting the Beneficial Arm of Ang II Signaling

Nicole Gallo-Payet; Michael Shum; Jean-Patrice Baillargeon; Marie-France Langlois; Charlotta Wallinder; Mathias Alterman; Anders Hallberg; André C. Carpentier

In the classical view, the hormone angiotensin II (Ang II) mediates its action via two major receptors, namely the Ang II type-1 receptor (AT1R) and the type-2 receptor (AT2R). Several recent revie ...


Bioorganic & Medicinal Chemistry Letters | 2016

Structural determinants of subtype selectivity and functional activity of angiotensin II receptors

Jessica Sallander; Charlotta Wallinder; Anders Hallberg; Johan Åqvist; Hugo Gutiérrez-de-Terán

Agonists of the angiotensin II receptor type 2 (AT2), a G-protein coupled receptor, promote tissue protective effects in cardiovascular and renal diseases, while antagonists reduce neuropathic pain. We here report detailed molecular models that explain the AT2 receptor selectivity of our recent series of non-peptide ligands. In addition, minor structural changes of these ligands that provoke different functional activity are rationalized at a molecular level, and related to the selectivity for the different receptor conformations. These findings should pave the way to structure based drug discovery of AT2 receptor ligands.

Collaboration


Dive into the Charlotta Wallinder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge