Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte A. Berkes is active.

Publication


Featured researches published by Charlotte A. Berkes.


Molecular Cell | 2004

Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential.

Charlotte A. Berkes; Donald A. Bergstrom; Bennett H. Penn; Karen J. Seaver; Paul S. Knoepfler; Stephen J. Tapscott

Skeletal muscle differentiation is initiated by the transcription factor MyoD, which binds directly to the regulatory regions of genes expressed during skeletal muscle differentiation and initiates chromatin remodeling at specific promoters. It is not known, however, how MyoD initially recognizes its binding site in a chromatin context. Here we show that the H/C and helix III domains, two domains of MyoD that are necessary for the initiation of chromatin remodeling at the myogenin locus, together regulate a restricted subset of genes, including myogenin. These domains are necessary for the stable binding of MyoD to the myogenin promoter through an interaction with an adjacent protein complex containing the homeodomain protein Pbx, which appears to be constitutively bound at this site. This demonstrates a specific mechanism of targeting MyoD to loci in inactive chromatin and reveals a critical role of homeodomain proteins in marking specific genes for activation in the muscle lineage.


Molecular and Cellular Biology | 2005

MyoD Targets Chromatin Remodeling Complexes to the Myogenin Locus Prior to Forming a Stable DNA-Bound Complex

Ivana L. de la Serna; Yasuyuki Ohkawa; Charlotte A. Berkes; Donald A. Bergstrom; Caroline S. Dacwag; Stephen J. Tapscott; Anthony N. Imbalzano

ABSTRACT The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we performed chromatin immunoprecipitations analyzing the myogenin promoter. We found that H4 hyperacetylation preceded Brg1 binding in a MyoD-dependent manner but that MyoD binding occurred subsequent to H4 modification and Brg1 interaction. In the absence of functional SWI/SNF enzymes, muscle regulatory proteins did not bind to the myogenin promoter, thereby providing evidence for SWI/SNF-dependent activator binding. We observed that the homeodomain factor Pbx1, which cooperates with MyoD to stimulate myogenin expression, is constitutively bound to the myogenin promoter in a SWI/SNF-independent manner, suggesting a two-step mechanism in which MyoD initially interacts indirectly with the myogenin promoter and attracts chromatin-remodeling enzymes, which then facilitate direct binding by MyoD and other regulatory proteins.


The EMBO Journal | 2006

Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters

Yi Cao; Roshan M. Kumar; Bennett H. Penn; Charlotte A. Berkes; Charles Kooperberg; Laurie A. Boyer; Richard A. Young; Stephen J. Tapscott

We used a combination of genome‐wide and promoter‐specific DNA binding and expression analyses to assess the functional roles of Myod and Myog in regulating the program of skeletal muscle gene expression. Our findings indicate that Myod and Myog have distinct regulatory roles at a similar set of target genes. At genes expressed throughout the program of myogenic differentiation, Myod can bind and recruit histone acetyltransferases. At early targets, Myod is sufficient for near full expression, whereas, at late expressed genes, Myod initiates regional histone modification but is not sufficient for gene expression. At these late genes, Myog does not bind efficiently without Myod; however, transcriptional activation requires the combined activity of Myod and Myog. Therefore, the role of Myog in mediating terminal differentiation is, in part, to enhance expression of a subset of genes previously initiated by Myod.


Molecular and Cellular Biology | 2006

MyoD synergizes with the E-protein HEBβ to induce myogenic differentiation

Maura H. Parker; Robert L. S. Perry; Mélanie C. Fauteux; Charlotte A. Berkes; Michael A. Rudnicki

ABSTRACT The MyoD family of basic helix-loop-helix transcription factors function as heterodimers with members of the E-protein family to induce myogenic gene activation. The E-protein HEB is alternatively spliced to generate α and β isoforms. While the function of these molecules has been studied in other cell types, questions persist regarding the molecular functions of HEB proteins in skeletal muscle. Our data demonstrate that HEBα expression remains unchanged in both myoblasts and myotubes, whereas HEBβ is upregulated during the early phases of terminal differentiation. Upon induction of differentiation, a MyoD-HEBβ complex bound the E1 E-box of the myogenin promoter leading to transcriptional activation. Importantly, forced expression of HEBβ with MyoD synergistically lead to precocious myogenin expression in proliferating myoblasts. However, after differentiation, HEBα and HEBβ synergized with myogenin, but not MyoD, to activate the myogenin promoter. Specific knockdown of HEBβ by small interfering RNA in myoblasts blocked differentiation and inhibited induction of myogenin transcription. Therefore, HEBα and HEBβ play novel and central roles in orchestrating the regulation of myogenic factor activity through myogenic differentiation.


Infection and Immunity | 2010

Conidia but Not Yeast Cells of the Fungal Pathogen Histoplasma capsulatum Trigger a Type I Interferon Innate Immune Response in Murine Macrophages

Diane O. Inglis; Charlotte A. Berkes; Davina R. Hocking Murray; Anita Sil

ABSTRACT Histoplasma capsulatum is the most common cause of fungal respiratory infections and can lead to progressive disseminated infections, particularly in immunocompromised patients. Infection occurs upon inhalation of the aerosolized spores, known as conidia. Once inside the host, conidia are phagocytosed by alveolar macrophages. The conidia subsequently germinate and produce a budding yeast-like form that colonizes host macrophages and can disseminate throughout host organs and tissues. Even though conidia are the predominant infectious particle for H. capsulatum and are the first cell type encountered by the host during infection, very little is known at a molecular level about conidia or about their interaction with cells of the host immune system. We examined the interaction between conidia and host cells in a murine bone-marrow-derived macrophage model of infection. We used whole-genome expression profiling and quantitative reverse transcription-PCR (qRT-PCR) to monitor the macrophage signaling pathways that are modulated during infection with conidia. Our analysis revealed that type I interferon (IFN)-responsive genes and the beta type I IFN (IFN-β) were induced in macrophages during infection with H. capsulatum conidia but not H. capsulatum yeast cells. Further analysis revealed that the type I IFN signature induced in macrophages in response to conidia is independent of Toll-like receptor (TLR) signaling and the cytosolic RNA sensor MAVS but is dependent on the transcription factor interferon regulatory factor 3 (IRF3). Interestingly, H. capsulatum growth was restricted in mice lacking the type I IFN receptor, indicating that an intact host type I IFN response is required for full virulence of H. capsulatum in mice.


Molecular Microbiology | 2015

Macrophage Cell Death and Transcriptional Response are Actively Triggered by the Fungal Virulence Factor Cbp1 During H. capsulatum Infection

Dervla T. Isaac; Charlotte A. Berkes; Bevin C. English; Davina R. Hocking Murray; Young Nam Lee; Alison Coady; Anita Sil

Microbial pathogens induce or inhibit death of host cells during infection, with significant consequences for virulence and disease progression. Death of an infected host cell can either facilitate release and dissemination of intracellular pathogens or promote pathogen clearance. Histoplasma capsulatum is an intracellular fungal pathogen that replicates robustly within macrophages and triggers macrophage lysis by unknown means. To identify H. capsulatum effectors of macrophage lysis, we performed a genetic screen and discovered three mutants that grew to wild‐type levels within macrophages but failed to elicit host‐cell death. Each mutant was defective in production of the previously identified secreted protein Cbp1 (calcium‐binding protein 1), whose role in intracellular growth had not been fully investigated. We found that Cbp1 was dispensable for high levels of intracellular growth but required to elicit a unique transcriptional signature in macrophages, including genes whose induction was previously associated with endoplasmic reticulum stress and host‐cell death. Additionally, Cbp1 was required for activation of cell‐death caspases‐3/7, and macrophage death during H. capsulatum infection was dependent on the pro‐apoptotic proteins Bax and Bak. Taken together, these findings strongly suggest that the ability of Cbp1 to actively program host‐cell death is an essential step in H. capsulatum pathogenesis.


Journal of Industrial Microbiology & Biotechnology | 2012

Novel image cytometric method for detection of physiological and metabolic changes in Saccharomyces cerevisiae

Leo Li-Ying Chan; Alexandria L. Kury; Alisha R. Wilkinson; Charlotte A. Berkes; Alnoor Pirani

The studying and monitoring of physiological and metabolic changes in Saccharomyces cerevisiae (S. cerevisiae) has been a key research area for the brewing, baking, and biofuels industries, which rely on these economically important yeasts to produce their products. Specifically for breweries, physiological and metabolic parameters such as viability, vitality, glycogen, neutral lipid, and trehalose content can be measured to better understand the status of S. cerevisiae during fermentation. Traditionally, these physiological and metabolic changes can be qualitatively observed using fluorescence microscopy or flow cytometry for quantitative fluorescence analysis of fluorescently labeled cellular components associated with each parameter. However, both methods pose known challenges to the end-users. Specifically, conventional fluorescent microscopes lack automation and fluorescence analysis capabilities to quantitatively analyze large numbers of cells. Although flow cytometry is suitable for quantitative analysis of tens of thousands of fluorescently labeled cells, the instruments require a considerable amount of maintenance, highly trained technicians, and the system is relatively expensive to both purchase and maintain. In this work, we demonstrate the first use of Cellometer Vision for the kinetic detection and analysis of vitality, glycogen, neutral lipid, and trehalose content of S. cerevisiae. This method provides an important research tool for large and small breweries to study and monitor these physiological behaviors during production, which can improve fermentation conditions to produce consistent and higher-quality products.


Journal of Microbiological Methods | 2012

Rapid Quantification of Pathogenic Fungi by Cellometer Image-Based Cytometry

Charlotte A. Berkes; Leo Li-Ying Chan; Alisha R. Wilkinson; Benjamin Paradis

The objective of this study was to develop an image-based cytometric methodology for the quantification of viable pathogenic yeasts, which can offer increased sensitivity and efficiency when compared to the traditional colony forming unit (CFU) assay. Live/dead yeast quantification by flow cytometry has been previously demonstrated, however, adoption of flow cytometric detection of pathogenic yeasts has been limited for a number of practical reasons including its high cost and biosafety considerations. Our studies focus on detection of two human fungal pathogens: Histoplasma capsulatum and Candida albicans. H. capsulatum colonizes alveolar macrophages by replicating within the macrophage phagosome. Here, we quantitatively assess the growth of H. capsulatum yeasts within RAW 264.7 macrophages using acridine orange/propidium iodide staining in combination with Cellometer image-based cytometry; this method faithfully recapitulates growth trends as measured by traditional CFU enumeration, but with significantly increased sensitivity. Additionally, we directly assess infection of bone marrow-derived macrophages with a GFP-expressing strain of C. albicans. To demonstrate that image-based cytometry can be used as a tool to assess the susceptibility of fungi to antifungal drugs, we perform dose response experiments with the antifungal drugs amphotericin B and itraconazole and show that image-based cytometry allows rapid assessment of the kinetics of cytotoxicity induced by these antifungals. Our methodology offers a rapid, accurate, and economical means for detection and quantification of important human fungal pathogens, either alone or in association with host cells.


Molecular Cell | 2001

How to MEK Muscle

Bennett H. Penn; Charlotte A. Berkes; Donald A. Bergstrom; Stephen J. Tapscott

Myogenesis is inhibited by receptor activation of Ras through the MEK and ERK kinases, but the underlying mechanism is unclear. In this issue of Molecular Cell, Perry et al. show that activated MEK1 forms an inhibitory complex with myogenic transcription factors in the nucleus.


Computational Biology and Chemistry | 2013

A structural comparative approach to identifying novel antimalarial inhibitors

Jimmy Franco; Margaret A.L. Blackie; David Toth; Peter J. Smith; Joseph Capuano; Kurt Fastnacht; Charlotte A. Berkes

Malaria continues to affect millions of people annually. With the rise of drug resistant strains, the need for alternative treatments has become increasingly urgent. Recently, PfUCHL3 was identified as an essential deubiquitinating enzyme. The increasing number of drug target structures being solved has increased the feasibility of utilizing a structural comparative approach to identifying novel inhibitors. Using AutoDock Vina, we recently screened the NCI library of about 320,000 compounds against the crystal structure of PfUCHL3. The top hits were subsequently screened against its human ortholog UCHL3 as to identify compounds that could specifically target the PfUCHL3 over its human counterpart. This method was used to identify small molecule inhibitors that can preferentially inhibit the parasitic enzyme. Several compounds were identified that demonstrated significant binding affinity preference for the malaria target over the human enzyme. Two of these compounds demonstrated ng/mL activity.

Collaboration


Dive into the Charlotte A. Berkes's collaboration.

Top Co-Authors

Avatar

Stephen J. Tapscott

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bennett H. Penn

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita Sil

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Toth

University of Mary Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge