Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte A. Scarff is active.

Publication


Featured researches published by Charlotte A. Scarff.


Rapid Communications in Mass Spectrometry | 2008

Travelling wave ion mobility mass spectrometry studies of protein structure : biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurements

Charlotte A. Scarff; Konstantinos Thalassinos; Gillian R. Hilton; James H. Scrivens

The three-dimensional conformation of a protein is central to its biological function. The characterisation of aspects of three-dimensional protein structure by mass spectrometry is an area of much interest as the gas-phase conformation, in many instances, can be related to that of the solution phase. Travelling wave ion mobility mass spectrometry (TWIMS) was used to investigate the biological significance of gas-phase protein structure. Protein standards were analysed by TWIMS under denaturing and near-physiological solvent conditions and cross-sections estimated for the charge states observed. Estimates of collision cross-sections were obtained with reference to known standards with published cross-sections. Estimated cross-sections were compared with values from published X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy structures. The cross-section measured by ion mobility mass spectrometry varies with charge state, allowing the unfolding transition of proteins in the gas phase to be studied. Cross-sections estimated experimentally for proteins studied, for charge states most indicative of native structure, are in good agreement with measurements calculated from published X-ray and NMR structures. The relative stability of gas-phase structures has been investigated, for the proteins studied, based on their change in cross-section with increase in charge. These results illustrate that the TWIMS approach can provide data on three-dimensional protein structures of biological relevance.


Journal of the American Society for Mass Spectrometry | 2009

Probing hemoglobin structure by means of traveling-wave ion mobility mass spectrometry.

Charlotte A. Scarff; Vibhuti J. Patel; Konstantinos Thalassinos; James H. Scrivens

Hemoglobin (Hb) is a tetrameric noncovalent complex consisting of two α- and two β-globin chains each associated with a heme group. Its exact assembly pathway is a matter of debate. Disorders of hemoglobin are the most common inherited disorders and subsequently the molecule has been extensively studied. This work attempts to further elucidate the structural properties of the hemoglobin tetramer and its components. Gas-phase conformations of hemoglobin tetramers and their constituents were investigated by means of traveling-wave ion mobility mass spectrometry. Sickle (HbS) and normal (HbA) hemoglobin molecules were analyzed to determine whether conformational differences in their quaternary structure could be observed. Rotationally averaged collision cross sections were estimated for tetramer, dimer, apo-, and holo-monomers with reference to a protein standard with known cross sections. Estimates of cross section obtained for the tetramers were compared to values calculated from X-ray crystallographic structures. HbS was consistently estimated to have a larger cross section than that of HbA, comparable with values obtained from X-ray crystallographic structures. Nontetrameric species observed included apo- and holo- forms of α- and β-monomers and heterodimers; α- and β-monomers in both apo- and holo- forms were found to have similar cross sections, suggesting they maintain a similar fold in the gas phase in both the presence and the absence of heme. Heme-deficient dimer, observed in the spectrum when analyzing commercially prepared Hb, was not observed when analyzing fresh blood. This implies that holo-α-apo-β is not an essential intermediate within the Hb assembly pathway, as previously proposed.


Journal of the American Society for Mass Spectrometry | 2011

Ion Mobility Mass Spectrometry for Extracting Spectra of N-Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120

David J. Harvey; Frank Sobott; Matthew Crispin; Antoni Wrobel; Camille Bonomelli; Snezana Vasiljevic; Christopher N. Scanlan; Charlotte A. Scarff; Konstantinos Thalassinos; James H. Scrivens

The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.


Analytical Chemistry | 2014

Estimating collision cross sections of negatively charged N-glycans using traveling wave ion mobility-mass spectrometry.

Johanna Hofmann; Weston B. Struwe; Charlotte A. Scarff; James H. Scrivens; David J. Harvey; Kevin Pagel

Glycosylation is one of the most common post-translational modifications occurring in proteins. A detailed structural characterization of the involved carbohydrates, however, is still one of the greatest challenges in modern glycoproteomics, since multiple regio- and stereoisomers with an identical monosaccharide composition may exist. Recently, ion mobility-mass spectrometry (IM-MS), a technique in which ions are separated according to their mass, charge, and shape, has evolved as a promising technique for the separation and structural analysis of complex carbohydrates. This growing interest is based on the fact that the measured drift times can be converted into collision cross sections (CCSs), which can be compared, implemented into databases, and used as additional search criteria for structural identification. However, most of the currently used commercial IM-MS instruments utilize a nonuniform traveling wave field to propel the ions through the IM cell. As a result, CCS measurements cannot be performed directly and require calibration. Here, we present a calibration data set consisting of over 500 reference CCSs for negatively charged N-glycans and their fragments. Moreover, we show that dextran, already widely used as a calibrant in high performance liquid chromatography, is also a suitable calibrant for CCS estimations. Our data also indicate that a considerably increased error has to be taken into account when reference CCSs acquired in a different drift gas are used for calibration.


Journal of the American Society for Mass Spectrometry | 2012

MALDI-MS/MS with traveling wave ion mobility for the structural analysis of N-linked glycans.

David J. Harvey; Charlotte A. Scarff; Matthew Crispin; Christopher N. Scanlan; Camille Bonomelli; James H. Scrivens

The preference for singly charged ion formation by MALDI makes it a better choice than electrospray ionization for profiling mixtures of N-glycans. For structural analysis, fragmentation of negative ions often yields more informative spectra than fragmentation of positive ones but such ions are more difficult to produce from neutral glycans under MALDI conditions. This work investigates conditions for the formation of both positive and negative ions by MALDI from N-linked glycans released from glycoproteins and their subsequent MS/MS and ion mobility behaviour. 2,4,6-Trihydroxyacetophenone (THAP) doped with ammonium nitrate was found to give optimal ion yields in negative ion mode. Ammonium chloride or phosphate also yielded prominent adducts but anionic carbohydrates such as sulfated N-glycans tended to ionize preferentially. Carbohydrates adducted with all three adducts (phosphate, chloride, and nitrate) produced good negative ion CID spectra but those adducted with iodide and sulfate did not yield fragment ions although they gave stronger signals. Fragmentation paralleled that seen following electrospray ionization providing superior spectra than could be obtained by PSD on MALDI-TOF instruments or with ion traps. In addition, ion mobility drift times of the adducted glycans and the ability of this technique to separate isomers also mirrored those obtained following ESI sample introduction. Ion mobility also allowed profiles to be obtained from samples whose MALDI spectra showed no evidence of such ions allowing the technique to be used in conditions where sample amounts were limiting. The method was applied to N-glycans released from the recombinant human immunodeficiency virus glycoprotein, gp120.


Electrophoresis | 2013

Travelling wave ion mobility and negative ion fragmentation for the structural determination of N-linked glycans.

David J. Harvey; Charlotte A. Scarff; Matthew Edgeworth; Max Crispin; Christopher N. Scanlan; Frank Sobott; Sarah Allman; Kavitha Baruah; Laura K. Pritchard; James H. Scrivens

Travelling wave ion mobility was investigated for its ability to separate N‐glycans from other compounds and for resolution of isomers. Charged glycans, exemplified by sialylated complex N‐glycans released from bovine fetuin and ionised by electrospray, could be separated from residual glycopeptides allowing the minor, more highly sialylated compounds to be detected where their ions were obscured by ions from other compounds in different charge states. This technique was also found to be excellent for extracting the N‐glycan profiles from contaminated samples. Structural identification of the glycans was performed by negative ion CID fragmentation, a method that provides a wealth of structurally diagnostic ions. However, fragment ions can also appear in the glycan profiles where they can be mistaken for glycan molecular ions. Fragments and molecular ions were frequently shown to have different drift time profiles, allowing them to be differentiated. Some separation of isomers was found but only for the smallest compounds. Differentiation from conformers was achieved by plotting drift time profiles of the fragments; these profiles matched those of the precursor ions where conformers were present. The techniques were applied to investigations of N‐glycans released from the fungus Piptoporus betulinus where the technique was used to separate different carbohydrate types present in biological extracts.


Journal of the American Chemical Society | 2012

New structural insights into mechanically interlocked polymers revealed by ion mobility mass spectrometry.

Charlotte A. Scarff; Jonathon R. Snelling; Matthias M. Knust; Charles L. Wilkins; James H. Scrivens

Mechanically interlocked polymers can possess significant additional physical properties, in comparison to those associated with their constituent parts. Their unique properties make them attractive for a range of potential applications, such as as biomaterials and molecular machines. Their efficient and reproducible synthesis is therefore of much interest. Both their synthesis and subsequent characterization are intriguing yet demanding. The properties of mechanically interlocked polymeric systems depend not only on the properties of their individual components but also on the topology of the subsequent product. Here traveling wave ion mobility mass spectrometry has been used to investigate the structural properties of a polyrotaxane system. Ion mobility studies reveal that this system remains linear in form with increase in size. Both ion mobility studies and tandem mass spectrometry studies indicate that the macrocycle preferentially remains associated with the ammonium moiety of the polymeric repeat unit and is impeded from moving freely along the axle. This is consistent with NMR observations of the average structure. Analysis of mechanically interlocked polymers by ion mobility mass spectrometry provides additional structural insights into these systems relating to dynamics, heterogeneity, and topology. This molecule-specific information is vital in order to understand the origin of a systems functional properties.


Molecular & Cellular Proteomics | 2015

Examination of Ataxin-3 (atx-3) Aggregation by Structural Mass Spectrometry Techniques: A Rationale for Expedited Aggregation upon Polyglutamine (polyQ) Expansion

Charlotte A. Scarff; B. G. Almeida; Joana Fraga; Sandra Macedo-Ribeiro; Sheena E. Radford; Alison E. Ashcroft

Expansion of polyglutamine stretches leads to the formation of polyglutamine-containing neuronal aggregates and neuronal death in nine diseases for which there currently are no treatments or cures. This is largely due to a lack in understanding of the mechanisms by which expanded polyglutamine regions contribute to aggregation and disease. To complicate matters further, several of the polyglutamine-disease related proteins, including ataxin-3, have a multistage aggregation mechanism in which flanking domain self-assembly precedes polyglutamine aggregation yet is influenced by polyglutamine expansion. How polyglutamine expansion influences flanking domain aggregation is poorly understood. Here, we use a combination of mass spectrometry and biophysical approaches to investigate this issue for ataxin-3. We show that the conformational dynamics of the flanking Josephin domain in ataxin-3 with an expanded polyglutamine tract are altered in comparison to those exhibited by its nonexpanded counterpart, specifically within the aggregation-prone region of the Josephin domain (amino acid residues 73–96). Expansion thus exposes this region more frequently in ataxin-3 containing an expanded polyglutamine tract, providing a molecular explanation of why aggregation is accelerated upon polyglutamine expansion. Here, harnessing the power of ion mobility spectrometry-mass spectrometry, oligomeric species formed during aggregation are characterized and a model for oligomer growth proposed. The results suggest that a conformational change occurs at the dimer level that initiates self-assembly. New insights into ataxin-3 fibril architecture are also described, revealing the region of the Josephin domain involved in protofibril formation and demonstrating that polyglutamine aggregation proceeds as a distinct second step after protofibril formation without requiring structural rearrangement of the protofibril core. Overall, the results enable the effect of polyglutamine expansion on every stage of ataxin-3 self-assembly, from monomer through to fibril, to be described and a rationale for expedited aggregation upon polyglutamine expansion to be provided.


Journal of Mass Spectrometry | 2016

Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans.

David J. Harvey; Charlotte A. Scarff; Matthew Edgeworth; Kevin Pagel; Konstantinos Thalassinos; Weston B. Struwe; Max Crispin; James H. Scrivens

Nitrogen collisional cross sections (CCSs) of hybrid and complex glycans released from the glycoproteins IgG, gp120 (from human immunodeficiency virus), ovalbumin, α1-acid glycoprotein and thyroglobulin were measured with a travelling-wave ion mobility mass spectrometer using dextran as the calibrant. The utility of this instrument for isomer separation was also investigated. Some isomers, such as Man3 GlcNAc3 from chicken ovalbumin and Man3 GlcNAc3 Fuc1 from thyroglobulin could be partially resolved and identified by their negative ion fragmentation spectra obtained by collision-induced decomposition (CID). Several other larger glycans, however, although existing as isomers, produced only asymmetric rather than separated arrival time distributions (ATDs). Nevertheless, in these cases, isomers could often be detected by plotting extracted fragment ATDs of diagnostic fragment ions from the negative ion CID spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. Coincidence in the drift times of all fragment ions with an asymmetric ATD profile in this work, and in the related earlier paper on high-mannose glycans, usually suggested that separations were because of conformers or anomers, whereas symmetrical ATDs of fragments showing differences in drift times indicated isomer separation. Although some significant differences in CCSs were found for the smaller isomeric glycans, the differences found for the larger compounds were usually too small to be analytically useful. Possible correlations between CCSs and structural types were also investigated, and it was found that complex glycans tended to have slightly smaller CCSs than high-mannose glycans of comparable molecular weight. In addition, biantennary glycans containing a core fucose and/or a bisecting GlcNAc residue fell on different mobility-m/z trend lines to those glycans not so substituted with both of these substituents contributing to larger CCSs. Copyright


Biochimica et Biophysica Acta | 2018

Using a SMALP platform to determine a sub-nm single particle cryo-EM membrane protein structure

Mayuriben Parmar; Shaun Rawson; Charlotte A. Scarff; Adrian Goldman; Timothy R. Dafforn; Stephen P. Muench; Vincent L. G. Postis

The field of membrane protein structural biology has been revolutionized over the last few years with a number of high profile structures being solved using cryo-EM including Piezo, Ryanodine receptor, TRPV1 and the Glutamate receptor. Further developments in the EM field hold the promise of even greater progress in terms of greater resolution, which for membrane proteins is still typically within the 4–7 Å range. One advantage of a cryo-EM approach is the ability to study membrane proteins in more “native” like environments for example proteoliposomes, amphipols and nanodiscs. Recently, styrene maleic acid co-polymers (SMA) have been used to extract membrane proteins surrounded by native lipids (SMALPs) maintaining a more natural environment. We report here the structure of the Escherichia coli multidrug efflux transporter AcrB in a SMALP scaffold to sub-nm resolution, with the resulting map being consistent with high resolution crystal structures and other EM derived maps. However, both the C-terminal helix (TM12) and TM7 are poorly defined in the map. These helices are at the exterior of the helical bundle and form the greater interaction with the native lipids and SMA polymer and may represent a more dynamic region of the protein. This work shows the promise of using an SMA approach for single particle cryo-EM studies to provide sub-nm structures.

Collaboration


Dive into the Charlotte A. Scarff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Crispin

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Pagel

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge