Charlotte Dai Kubicky
Oregon Health & Science University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charlotte Dai Kubicky.
Journal of Palliative Medicine | 2012
Edward Y. Kim; Tobias R. Chapman; Samuel Ryu; Eric L. Chang; Nicholas Galanopoulos; Joshua Jones; Charlotte Dai Kubicky; Charles P. Lee; Bin S. Teh; Bryan Traughber; Catherine Van Poznak; Andrew D. Vassil; Kristy L. Weber; Simon S. Lo
Bone is one of the most common sites of metastatic spread of malignancy, with possible deleterious effects including pain, hypercalcemia, and pathologic fracture. External beam radiotherapy (EBRT) remains the mainstay for treatment of painful bone metastases. EBRT may be combined with other local therapies like surgery or with systemic treatments like chemotherapy, hormonal therapy, osteoclast inhibitors, or radiopharmaceuticals. EBRT is not commonly recommended for patients with asymptomatic bone metastases unless they are associated with a risk of pathologic fracture. For those who do receive EBRT, appropriate fractionation schemes include 30 Gy in 10 fractions, 24 Gy in 6 fractions, 20 Gy in 5 fractions, or a single 8 Gy fraction. Single fraction treatment maximizes convenience, while fractionated treatment courses are associated with a lower incidence of retreatment. The appropriate postoperative dose fractionation following surgical stabilization is uncertain. Reirradiation with EBRT may be safe and provide pain relief, though retreatment might create side effect risks which warrant its use as part of a clinical trial. All patients with bone metastases should be considered for concurrent management by a palliative care team, with patients whose life expectancy is less than six months appropriate for hospice evaluation. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every two years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.
Brachytherapy | 2008
Charlotte Dai Kubicky; Benjamin M. Yeh; Etienne Lessard; Bonnie N. Joe; Joycelyn Speight; Jean Pouliot; I.-Chow Hsu
PURPOSE To develop a technique using exclusively magnetic resonance imaging (MRI) to perform dwell position identification, targets and organs at risk delineation, and to apply inverse planning dose optimization to high-dose-rate brachytherapy for cervical cancer. METHODS AND MATERIALS We included 15 consecutive women treated with high-dose-rate (HDR) brachytherapy for cervical cancer. All patients underwent MRI after placement of tandem and ring applicator containing a gadodiamide-filled dummy marker. This technique allowed direct visualization of the source pathway and precise definition of the intra-applicator source positions. For each patient, we delineated gross target volume (GTV), high-risk clinical target volume (HR-CTV), and organs at risk on MRI, according to the European Gynecological GEC-ESTRO Working Group definitions. We performed inverse planning simulated annealing (IPSA) and analyzed the dose-volume histograms with the following endpoints: D(90), D(100), and V(100) for GTV and HR-CTV; D0.1 cc, D1 cc, D2 cc for bladder, rectum, and bowel; and dose at Point A. RESULTS The intra-applicator source pathway was easily visualized on MRI using the gadodiamide-filled marker. IPSA provided excellent target coverage. The mean D(90) and V(100) for HR-CTV were 103+/-5% and 92+/-3%, respectively. IPSA provided excellent bladder sparing. D1 cc and D2 cc of bladder were 73+/-10% and 67+/-10%, respectively. CONCLUSIONS We developed a novel technique that allows direct visualization of the intra-applicator source pathway on MRI. Using this technique, we successfully performed inverse planning directly from MRI.
Journal of Palliative Medicine | 2015
Simon S. Lo; Samuel Ryu; Eric L. Chang; Nicholas Galanopoulos; Joshua Jones; Edward Y. Kim; Charlotte Dai Kubicky; Charles P. Lee; Peter S. Rose; Arjun Sahgal; Andrew E. Sloan; Bin S. Teh; Bryan Traughber; Catherine Van Poznak; Andrew D. Vassil
Metastatic epidural spinal cord compression (MESCC) is an oncologic emergency and if left untreated, permanent paralysis will ensue. The treatment of MESCC is governed by disease, patient, and treatment factors. Patients preferences and goals of care are to be weighed into the treatment plan. Ideally, a patient with MESCC is evaluated by an interdisciplinary team promptly to determine the urgency of the clinical scenario. Treatment recommendations must take into consideration the risk-benefit profiles of surgical intervention and radiotherapy for the particular individuals circumstance, including neurologic status, performance status, extent of epidural disease, stability of the spine, extra-spinal disease status, and life expectancy. In patients with high spinal instability neoplastic score (SINS) or retropulsion of bone fragments in the spinal canal, surgical intervention should be strongly considered. The rate of development of motor deficits from spinal cord compression may be a prognostic factor for ultimate functional outcome, and should be taken into account when a treatment recommendation is made. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.
Journal of The American College of Radiology | 2016
Catherine C. Roberts; Mark J. Kransdorf; Francesca D. Beaman; Ronald S. Adler; Behrang Amini; Marc Appel; Stephanie A. Bernard; Ian Blair Fries; Isabelle M. Germano; Bennett S. Greenspan; Langston T. Holly; Charlotte Dai Kubicky; Simon S. Lo; Timothy J. Mosher; Andrew E. Sloan; Michael J. Tuite; Eric A. Walker; Robert J. Ward; Daniel E. Wessell; Barbara N. Weissman
Appropriate imaging modalities for the follow-up of malignant or aggressive musculoskeletal tumors include radiography, MRI, CT, (18)F-2-fluoro-2-deoxy-D-glucose PET/CT, (99m)Tc bone scan, and ultrasound. Clinical scenarios reviewed include evaluation for metastatic disease to the lung in low- and high-risk patients, for osseous metastatic disease in asymptomatic and symptomatic patients, for local recurrence of osseous tumors with and without significant hardware present, and for local recurrence of soft tissue tumors. The timing for follow-up of pulmonary metastasis surveillance is also reviewed. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.
International Journal of Radiation Oncology Biology Physics | 2013
Charlotte Dai Kubicky; Solange Mongoue-Tchokote
PURPOSE To determine whether patients with 1, 2, or 3 positive lymph nodes (LNs) have similar survival outcomes. METHODS AND MATERIALS We analyzed the Surveillance, Epidemiology, and End Results registry of breast cancer patients diagnosed between 1990 and 2003. We identified 10,415 women with T1-2N1M0 breast cancer who were treated with mastectomy with no adjuvant radiation, with at least 10 LNs examined and 6 months of follow-up. The Kaplan-Meier method and log-rank test were used for survival analysis. Multivariate analysis was performed using the Cox proportional hazard model. RESULTS Median follow-up was 92 months. Ten-year overall survival (OS) and cause-specific survival (CSS) were progressively worse with increasing number of positive LNs. Survival rates were 70%, 64%, and 60% (OS), and 82%, 76%, and 72% (CSS) for 1, 2, and 3 positive LNs, respectively. Pairwise log-rank test P values were <.001 (1 vs 2 positive LNs), <.001 (1 vs 3 positive LNs), and .002 (2 vs 3 positive LNs). Multivariate analysis showed that number of positive LNs was a significant predictor of OS and CSS. Hazard ratios increased with the number of positive LNs. In addition, age, primary tumor size, grade, estrogen receptor and progesterone receptor status, race, and year of diagnosis were significant prognostic factors. CONCLUSIONS Our study suggests that patients with 1, 2, and 3 positive LNs have distinct survival outcomes, with increasing number of positive LNs associated with worse OS and CSS. The conventional grouping of 1-3 positive LNs needs to be reconsidered.
Neuro-oncology | 2017
Chenyang Wang; Tania Kaprealian; John H. Suh; Charlotte Dai Kubicky; Jeremy N. Ciporen; Yiyi Chen; Jerry J. Jaboin
Background Adjuvant radiotherapy (RT) after surgical resection of World Health Organization (WHO) grade II meningioma, also known as atypical meningioma (AM), is a topic of controversy. The purpose of this study is to compare overall survival (OS) with or without adjuvant RT after subtotal resection (STR) or gross total resection (GTR) in AM patients diagnosed according to the 2007 WHO classification. Methods The National Cancer Database was used to identify 2515 patients who were diagnosed with AM between 2009 and 2012 and underwent STR or GTR with or without adjuvant RT. Propensity score matching was first applied to balance covariates including age, year of diagnosis, sex, race, histology, and tumor size in STR or GTR cohorts stratified by adjuvant RT status. Multivariate regression according to the Cox proportional hazards model and Kaplan-Meier survival plots with log-rank test were then used to evaluate OS difference associated with adjuvant RT. Results GTR is associated with improved OS compared with STR. In the subgroup analysis, adjuvant RT in patients who underwent STR demonstrated significant association with improved OS compared with no adjuvant RT (adjusted hazard ratio [AHR] 0.590, P = .045); however, adjuvant RT is not associated with improved OS in patients who underwent GTR (AHR 1.093, P = .737). Conclusions Despite the lack of consensus on whether adjuvant RT reduces recurrence after surgical resection of AM, our study observed significantly improved OS with adjuvant RT compared with no adjuvant RT after STR.
Rare Tumors | 2014
Charlotte Dai Kubicky; Arjun Sahgal; Eric L. Chang; Simon S. Lo
There are close to 70,000 new cases of primary central nervous system tumors diagnosed annually in the United States. Meningiomas, gliomas, nerve sheath tumors and pituitary tumors account for 85% of them. There is abundant literature on these commonly occurring tumors but data from the literature on infrequently encountered tumors such as atypical teratoid/rhabdoid tumor, choroid plexus carcinoma, ganglioglioma, hemangiopericytoma, and pleomorphic xanthoastrocytoma are limited. This review provides an overview of the clinicopathologic and therapeutic aspects of these rare primary central nervous system tumors.
British Journal of Radiology | 2012
James A. Tanyi; E J Doss; C M Kato; D L Monaco; L ZMeng; Yiyi Chen; Charlotte Dai Kubicky; Carol Marquez; M Fuss
OBJECTIVE The effect of multileaf collimator (MLC) margin on target and normal tissue dose-volume metrics for intracranial stereotactic radiosurgery (SRS) was assessed. METHODS 118 intracranial lesions of 83 SRS patients formed the basis of this study. For each planning target volume (PTV), five separate treatment plans were generated with MLC margins of -1, 0, 1, 2 and 3 mm, respectively. Identical treatment planning parameters were employed with a median of five dynamic conformal arcs using the Varian/BrainLab high-definition MLC for beam shaping. Prescription dose (PD) was such that 22 Gy covered at least 95% of the PTV. Dose-volume and dose-response comparative metrics included conformity index, heterogeneity index, dose gradient, tumour control probability (TCP) and normal tissue complication probability (NTCP). RESULTS Target dose heterogeneity decreased with increasing MLC margin (p<0.001); mean heterogeneity index decreased from 70.4 ± 12.7 to 10.4 ± 2.2%. TCP decreased with increasing MLC margin (p<0.001); mean TCP decreased from 81.0 ± 2.3 to 62.2 ± 1.8%. Normal tissue dose fall-off increased with MLC margin (p<0.001); mean gradient increased from 3.1 ± 0.9 mm to 5.3 ± 0.7 mm. NTCP was optimal at 1 mm MLC margin. No unambiguous correlation was observed between NTCP and PTV volume. Plan delivery efficiency generally improved with larger margins (p<0.001); mean monitor unit per centigray of the PD decreased from 3.60 ± 1.30 to 1.56 ± 0.13. Conclusion Use of 1 mm MLC margins for dynamic conformal arc-based cranial radiosurgery resulted in optimal tumour control and normal tissue sparing. Clinical significance of these comparative findings warrants further investigation.
JAMA Oncology | 2015
Timur Mitin; Charlotte Dai Kubicky
RESULTS Hypofractionated WBI increased from 10.6% (95% CI, 8.8%-12.5%) in 2008 to 34.5% (95% CI, 32.2%-36.8%) in 2013 in the hypofractionation-endorsed cohort and from 8.1% (95% CI, 6.0%-10.2%) in 2008 to 21.2% (95% CI, 18.9%-23.6%) in 2013 in the hypofractionation-permitted cohort. Adjusted mean total health care expenditures in the 1 year after diagnosis were
Surgical Neurology International | 2016
Justin Reddington; Gustavo Mendez; Alex Ching; Charlotte Dai Kubicky; Paul Klimo; Brian T. Ragel
28 747 for hypofractionated and