Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte E. Remé is active.

Publication


Featured researches published by Charlotte E. Remé.


Nature Medicine | 2002

HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration

Christian Grimm; Andreas Wenzel; Matthias Groszer; Helmut Mayser; Mathias W. Seeliger; Marijana Samardzija; Christian Bauer; Max Gassmann; Charlotte E. Remé

Erythropoietin (Epo) is upregulated by hypoxia and provides protection against apoptosis of erythroid progenitors in bone marrow and brain neurons. Here we show in the adult mouse retina that acute hypoxia dose-dependently stimulates expression of Epo, fibroblast growth factor 2 and vascular endothelial growth factor via hypoxia-inducible factor-1α (HIF-1α) stabilization. Hypoxic preconditioning protects retinal morphology and function against light-induced apoptosis by interfering with caspase-1 activation, a downstream event in the intracellular death cascade. In contrast, induction of activator protein-1, an early event in the light-stressed retina, is not affected by hypoxia. The Epo receptor required for Epo signaling localizes to photoreceptor cells. The protective effect of hypoxic preconditioning is mimicked by systemically applied Epo that crosses the blood–retina barrier and prevents apoptosis even when given therapeutically after light insult. Application of Epo may, through the inhibition of apoptosis, be beneficial for the treatment of different forms of retinal disease.


Nature Genetics | 2001

New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis.

Mathias W. Seeliger; Christian Grimm; Fredrik Ståhlberg; Christoph Friedburg; Gesine B. Jaissle; Eberhart Zrenner; Hao Guo; Charlotte E. Remé; Peter Humphries; Franz Hofmann; Martin Biel; Robert N. Fariss; T. Michael Redmond; Andreas Wenzel

Leber congenital amaurosis (LCA) is the most serious form of the autosomal recessive childhood-onset retinal dystrophies. Mutations in the gene encoding RPE65, a protein vital for regeneration of the visual pigment rhodopsin in the retinal pigment epithelium, account for 10–15% of LCA cases. Whereas previous studies of RPE65 deficiency in both animal models and patients attributed remaining visual function to cones, we show here that light-evoked retinal responses in fact originate from rods. For this purpose, we selectively impaired either rod or cone function in Rpe65−/− mice by generating double– mutant mice with models of pure cone function (rhodopsin-deficient mice; Rho−/−) and pure rod function (cyclic nucleotide–gated channel α3–deficient mice; Cnga3−/−). The electroretinograms (ERGs) of Rpe65−/− and Rpe65−/−Cnga3−/− mice were almost identical, whereas there was no assessable response in Rpe65−/−Rho−/− mice. Thus, we conclude that the rod system is the source of vision in RPE65 deficiency. Furthermore, we found that lack of RPE65 enables rods to mimic cone function by responding under normally cone-isolating lighting conditions. We propose as a mechanism decreased rod sensitivity due to a reduction in rhodopsin content to less than 1%. In general, the dissection of pathophysiological processes in animal models through the introduction of additional, selective mutations is a promising concept in functional genetics.


Progress in Retinal and Eye Research | 1998

Apoptotic cell death in retinal degenerations.

Charlotte E. Remé; Christian Grimm; Farhad Hafezi; Andreas Marti; Andreas Wenzel

Apoptosis is a regulated mode of single cell death that involves gene expression in many instances and occurs under physiological and pathological conditions in a large variety of systems. We briefly summarize major features of apoptosis in general and describe the occurrence of apoptosis in the retina in different situations that comprise animal models of retinitis pigmentosa, light-induced lesions, histogenesis during development, and others. Apoptosis can be separated into several phases: the induction by a multitude of stimuli, the effector phase in which the apoptotic signal is transmitted to the cellular death machinery, the excecution period when proteolytic cascades are activated, and the phagocytic removal of cellular remnants. Control mechanisms for retinal apoptosis are only beginning to be clarified. Potential apoptotic signal transducers were investigated in our laboratory, including metabolites of arachidonic acid and downstream mediators of signaling molecules such as transcription factors. Work in our laboratory revealed an essential role of the immediate-early gene product c-Fos in light-induced apoptosis. c-Fos is a member of the AP-1 family of transcription factors and, together with other members of this family, it may regulate apoptosis in the central nervous system. Expression of the c-fos gene in the retina can be evoked by light exposure and follows a diurnal rhythm. Future studies will have to clarify how light can control the expression of specific genes, and specifically, the role of c-fos and other genes of retinal apoptosis including potential target genes and signaling pathways.


Nature Genetics | 2000

Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced retinal degeneration

Christian Grimm; Andreas Wenzel; Farhad Hafezi; Shirley Yu; T. Michael Redmond; Charlotte E. Remé

Light-induced apoptosis of photoreceptors represents an animal model for retinal degeneration. Major human diseases that affect vision, such as age-related macular degeneration (AMD) and some forms of retinitis pigmentosa (RP), may be promoted by light. The receptor mediating light damage, however, has not yet been conclusively identified; candidate molecules include prostaglandin synthase, cytochrome oxidase, rhodopsin, and opsins of the cones and the retinal pigment epithelium (PE). We exposed to bright light two groups of genetically altered mice that lack the visual pigment rhodopsin (Rpe65−/− and Rho−/−). The gene Rpe65 is specifically expressed in the PE and essential for the re-isomerization of all-trans retinol in the visual cycle and thus for the regeneration of rhodopsin after bleaching. Rho−/− mice do not express the apoprotein opsin in photoreceptors, which, consequently, do not contain rhodopsin. We show that photoreceptors lacking rhodopsin in these mice are completely protected against light-induced apoptosis. The transcription factor AP-1, a central element in the apoptotic response to light, is not activated in the absence of rhodopsin, indicating that rhodopsin is essential for the generation or transduction of the intracellular death signal induced by light.


Nature Genetics | 2002

Evidence for two apoptotic pathways in light-induced retinal degeneration

Wenshan Hao; Andreas Wenzel; Martin S. Obin; Ching-Kang Chen; Elliott Brill; Nataliia V. Krasnoperova; Pamela Eversole-Cire; Yelena Kleyner; Allen Taylor; Melvin I. Simon; Christian Grimm; Charlotte E. Remé; Janis Lem

Excessive phototransduction signaling is thought to be involved in light-induced and inherited retinal degeneration. Using knockout mice with defects in rhodopsin shut-off and transducin signaling, we show that two different pathways of photoreceptor-cell apoptosis are induced by light. Bright light induces apoptosis that is independent of transducin and accompanied by induction of the transcription factor AP-1. By contrast, low light induces an apoptotic pathway that requires transducin. We also provide evidence that additional genetic factors regulate sensitivity to light-induced damage. Our use of defined mouse mutants resolves some of the complexity underlying the mechanisms that regulate susceptibility to retinal degeneration.


PLOS ONE | 2009

Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography

M. Dominik Fischer; Gesine Huber; Susanne C. Beck; Naoyuki Tanimoto; Regine Muehlfriedel; Edda Fahl; Christian Grimm; Andreas Wenzel; Charlotte E. Remé; Serge A. van de Pavert; Jan Wijnholds; Marek Pacal; Rod Bremner; Mathias W. Seeliger

Background Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. Methodology/Principal Findings We achieved to adapt a commercial 3rd generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Lebers congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. Conclusions/Significance We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies.


Journal of Biological Rhythms | 1991

The visual input stage of the mammalian circadian pacemaking system: I. Is there a clock in the mammalian eye?

Charlotte E. Remé; Anna Wirz-Justice; Michael Terman

Threads of evidence from recent experimentation in retinal morphology, neurochemistry, electrophysiology, and visual perception point toward rhythmic ocular processes that may be integral components of circadian entrainment in mammals. Components of retinal cell biology (rod outer- segment disk shedding, inner-segment degradation, melatonin and dopamine synthesis, electrophysiological responses) show self-sustaining circadian oscillations whose phase can be controlled by light-dark cycles. A complete phase response curve in visual sensitivity can be generated from light-pulse-induced phase shifting. Following lesions of the suprachiasmatic nuclei, circadian rhythms of visual detectability and rod outer-segment disk shedding persist, even though behavioral activity becomes arrhythmic. We discuss the converging evidence for an ocular circadian timing system in terms of interactions between rhythmic retinal processes and the central suprachiasmatic pacemaker, and propose that retinal phase shifts to light provide a critical input signal.


Neuroscience Letters | 1984

Circadian rhythm in rat retinal dopamine

Anna Wirz-Justice; Mosé Da Prada; Charlotte E. Remé

Rat retinal dopamine concentration and synthetic rate exhibit a circadian rhythm that persists in the absence of time cues. Although the population of retinal amacrine cells containing dopamine is small, retinal dopamine neurones may lie on the pathway mediating light information to the circadian system.


The Journal of Neuroscience | 2004

Constitutive Overexpression of Human Erythropoietin Protects the Mouse Retina against Induced But Not Inherited Retinal Degeneration

Christian Grimm; Andreas Wenzel; Dinu Stanescu; Marijana Samardzija; Svenja Hotop; Mathias Groszer; Muna I. Naash; Max Gassmann; Charlotte E. Remé

Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the common path to cell loss in retinal dystrophies such as retinitis pigmentosa (RP), we tested whether high levels of huEpo would reduce apoptotic cell death in two mouse models of human RP. We combined the two respective mutant mouse lines with a transgenic line (tg6) that constitutively overexpresses huEpo mainly in neural tissues. Transgenic expression of huEpo caused constitutively high levels of Epo in the retina and protected photoreceptors against light-induced degeneration; however, the presence of high levels of huEpo did not affect the course or the extent of retinal degeneration in a light-independent (rd1) and a light-accelerated (VPP) mouse model of RP. Similarly, repetitive intraperitoneal injections of recombinant huEpo did not protect the retina in the rd1 and the VPP mouse. Lack of neuroprotection by Epo in the two models of inherited retinal degeneration was not caused by adaptational downregulation of Epo receptor. Our results suggest that apoptotic mechanisms during acute, light-induced photoreceptor cell death differ from those in genetically based retinal degeneration. Therapeutic intervention with cell death in inherited retinal degeneration may therefore require different drugs and treatments.


American Journal of Pathology | 2009

Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions.

Sandrine Joly; Mike Francke; Elke Ulbricht; Susanne C. Beck; M. W. Seeliger; Petra G. Hirrlinger; Johannes Hirrlinger; Karl S. Lang; Martin Zinkernagel; Bernhard Odermatt; Marijana Samardzija; Andreas Reichenbach; Christian Grimm; Charlotte E. Remé

Phagocytosis is essential for the removal of photoreceptor debris following retinal injury. We used two mouse models, mice injected with green fluorescent protein-labeled bone marrow cells or green fluorescent protein-labeled microglia, to study the origin and activation patterns of phagocytic cells after acute blue light-induced retinal lesions. We show that following injury, blood-borne macrophages enter the eye via the optic nerve and ciliary body and soon migrate into the injured retinal area. Resident microglia are also activated rapidly throughout the entire retina and adopt macrophage characteristics only in the injured region. Both blood-borne- and microglia-derived macrophages were involved in the phagocytosis of dead photoreceptors. No obvious breakdown of the blood-retinal barrier was observed. Ccl4, Ccl12, Tgfb1, Csf1, and Tnf were differentially expressed in both the isolated retina and the eyecup of wild-type mice. Debris-laden macrophages appeared to leave the retina into the general circulation, suggesting their potential to become antigen-presenting cells. These experiments provide evidence that both local and immigrant macrophages remove apoptotic photoreceptors and cell debris in the injured retina.

Collaboration


Dive into the Charlotte E. Remé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farhad Hafezi

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

C. Grimm

University of Zurich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge