Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte E. Teunissen is active.

Publication


Featured researches published by Charlotte E. Teunissen.


Alzheimers & Dementia | 2011

The Alzheimer's Association external quality control program for cerebrospinal fluid biomarkers.

Niklas Mattsson; Ulf Andreasson; Staffan Persson; Hiroyuki Arai; Sat Dev Batish; Sergio Bernardini; Luisella Bocchio-Chiavetto; Marinus A. Blankenstein; Maria Carrillo; Sonia Chalbot; Els Coart; Davide Chiasserini; Neal Cutler; Gunilla Dahlfors; Stefan Duller; Anne M. Fagan; Orestes Vicente Forlenza; Giovanni B. Frisoni; Douglas Galasko; Daniela Galimberti; Harald Hampel; Aase Handberg; Michael T. Heneka; Adrianna Z. Herskovits; Sanna-Kaisa Herukka; David M. Holtzman; Christian Humpel; Bradley T. Hyman; Khalid Iqbal; Mathias Jucker

The cerebrospinal fluid (CSF) biomarkers amyloid β (Aβ)‐42, total‐tau (T‐tau), and phosphorylated‐tau (P‐tau) demonstrate good diagnostic accuracy for Alzheimers disease (AD). However, there are large variations in biomarker measurements between studies, and between and within laboratories. The Alzheimers Association has initiated a global quality control program to estimate and monitor variability of measurements, quantify batch‐to‐batch assay variations, and identify sources of variability. In this article, we present the results from the first two rounds of the program.


Neurology | 2012

Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort

Niki S.M. Schoonenboom; Fransje Reesink; N. A. Verwey; M. I. Kester; Charlotte E. Teunissen; P.M. van de Ven; Yolande A.L. Pijnenburg; Marinus A. Blankenstein; Annemieke Rozemuller; P. Scheltens; W.M. van der Flier

Objective: To determine how amyloid β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) levels in CSF behave in a large cohort of patients with different types of dementia. Methods: Baseline CSF was collected from 512 patients with Alzheimer disease (AD) and 272 patients with other types of dementia (OD), 135 patients with a psychiatric disorder (PSY), and 275 patients with subjective memory complaints (SMC). Aβ42, t-tau, and p-tau (at amino acid 181) were measured in CSF by ELISA. Autopsy was obtained in a subgroup of 17 patients. Results: A correct classification of patients with AD (92%) and patients with OD (66%) was accomplished when CSF Aβ42 and p-tau were combined. Patients with progressive supranuclear palsy had normal CSF biomarker values in 90%. Patients with Creutzfeldt-Jakob disease demonstrated an extremely high CSF t-tau at a relatively normal CSF p-tau. CSF AD biomarker profile was seen in 47% of patients with dementia with Lewy bodies (DLB), 38% in corticobasal degeneration (CBD), and almost 30% in frontotemporal lobar degeneration (FTLD) and vascular dementia (VaD). PSY and SMC patients had normal CSF biomarkers in 91% and 88%. Older patients are more likely to have a CSF AD profile. Concordance between clinical and neuropathologic diagnosis was 85%. CSF markers reflected neuropathology in 94%. Conclusion: CSF Aβ42, t-tau, and p-tau are useful in differential dementia diagnosis. However, in DLB, FTLD, VaD, and CBD, a substantial group exhibit a CSF AD biomarker profile, which requires more autopsy confirmation in the future.


Biomarkers in Medicine | 2012

Recommendations to standardize preanalytical confounding factors in Alzheimer's and Parkinson's disease cerebrospinal fluid biomarkers: an update

Marta Del Campo; Brit Mollenhauer; Antonio Bertolotto; Sebastiaan Engelborghs; Harald Hampel; Anja Hviid Simonsen; Elisabeth Kapaki; Niels Kruse; Nathalie Le Bastard; Sylvain Lehmann; José Luis Molinuevo; Lucilla Parnetti; Armand Perret-Liaudet; Javier Sáez-Valero; Esen Saka; Andrea Urbani; Eugeen Vanmechelen; Marcel M. Verbeek; Pieter Jelle Visser; Charlotte E. Teunissen

Early diagnosis of neurodegenerative disorders such as Alzheimers (AD) or Parkinsons disease (PD) is needed to slow down or halt the disease at the earliest stage. Cerebrospinal fluid (CSF) biomarkers can be a good tool for early diagnosis. However, their use in clinical practice is challenging due to the high variability found between centers in the concentrations of both AD CSF biomarkers (Aβ42, total tau and phosphorylated tau) and PD CSF biomarker (α-synuclein). Such a variability has been partially attributed to different preanalytical procedures between laboratories, thus highlighting the need to establish standardized operating procedures. Here, we merge two previous consensus guidelines for preanalytical confounding factors in order to achieve one exhaustive guideline updated with new evidence for Aβ42, total tau and phosphorylated tau, and α-synuclein. The proposed standardized operating procedures are applicable not only to novel CSF biomarkers in AD and PD, but also to biomarkers for other neurodegenerative disorders.


Neurology | 2013

Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease

Annapaola Prestia; Anna Caroli; Wiesje M. van der Flier; Rik Ossenkoppele; Bart N.M. van Berckel; Frederik Barkhof; Charlotte E. Teunissen; Anders Wall; Stephen F. Carter; Michael Schöll; Il Han Choo; Agneta Nordberg; Philip Scheltens; Giovanni B. Frisoni

Objectives: The current model of Alzheimer disease (AD) stipulates that brain amyloidosis biomarkers turn abnormal earliest, followed by cortical hypometabolism, and finally brain atrophy ones. The aim of this study is to provide clinical evidence of the model in patients with mild cognitive impairment (MCI). Methods: A total of 73 patients with MCI from 3 European memory clinics were included. Brain amyloidosis was assessed by CSF Aβ42 concentration, cortical metabolism by an index of temporoparietal hypometabolism on FDG-PET, and brain atrophy by automated hippocampal volume. Patients were divided into groups based on biomarker positivity: 1) Aβ42− FDG-PET− Hippo−, 2) Aβ42+ FDG-PET− Hippo−, 3) Aβ42 + FDG-PET + Hippo−, 4) Aβ42 + FDG-PET+ Hippo+, and 5) any other combination not in line with the model. Measures of validity were prevalence of group 5, increasing incidence of progression to dementia with increasing biological severity, and decreasing conversion time. Results: When patients with MCI underwent clinical follow-up, 29 progressed to dementia, while 44 remained stable. A total of 26% of patients were in group 5. Incident dementia was increasing with greater biological severity in groups 1 to 5 from 4% to 27%, 64%, and 100% (p for trend < 0.0001), and occurred increasingly earlier (p for trend = 0.024). Conclusions: The core biomarker pattern is in line with the current pathophysiologic model of AD. Fully normal and fully abnormal pattern is associated with exceptional and universal development of dementia. Cases not in line might be due to atypical neurobiology or inaccurate thresholds for biomarker (ab)normality.


Neurology | 2009

Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis

Charlotte E. Teunissen; Ellen Iacobaeus; Mohsen Khademi; Lou Brundin; N. Norgren; M.J.A. Koel-Simmelink; M. Schepens; F. Bouwman; H. A.M. Twaalfhoven; H. J. Blom; C. Jakobs; Christine D. Dijkstra

Objective: Axonal degeneration is the likely cause of disease progression in multiple sclerosis (MS). Our previous results indicated that neuron-specific N-acetylaspartate (NAA) is a candidate CSF biomarker for disease progression in MS. The aim of this study was to explore the potential of NAA as an early biomarker of axonal damage in MS. Next, we wanted to know the additional value of measurement of NAA compared to other candidate markers for axonal damage, such as neurofilament subunits and tau protein. Methods: Levels of NAA, neurofilament light, neurofilament heavy, and tau were determined in CSF of patients with clinically isolated syndrome (CIS, n = 38), relapsing-remitting MS (RRMS, n = 42), secondary progressive MS (SPMS, n = 28), and primary progressive MS (PPMS, n = 6); patients without neurologic disease (ND, n = 28); noninflammatory neurologic controls (n = 18); and inflammatory neurologic controls (n = 39). Results: CSF NAA levels were decreased in patients with SPMS compared to ND controls, patients with CIS, and patients with RRMS. CSF NAA levels in patients with CIS and RRMS were similar to those in ND subjects. All axonal damage proteins showed specific patterns of changes and relations with disease activity measures. The neurofilament light chain levels were already increased in patients with CIS, especially in patients who converted to MS. The neurofilament heavy chain levels were highest in the patients with SPMS. Tau levels were similar in MS and ND. Conclusions: CSF N-acetylaspartate (NAA) levels were not different from patients without neurologic disease in early stages of multiple sclerosis, though decreased as the disease progressed. Combining CSF NAA and neurofilament levels yields information on different phases of axonal pathology.


Brain | 2015

Alzheimer's disease cerebrospinal fluid biomarker in cognitively normal subjects

Jon B. Toledo; Henrik Zetterberg; Argonde C. van Harten; Lidia Glodzik; Pablo Martinez-Lage; Luisella Bocchio-Chiavetto; Lorena Rami; Oskar Hansson; Reisa A. Sperling; Sebastiaan Engelborghs; Ricardo S. Osorio; Hugo Vanderstichele; Manu Vandijck; Harald Hampel; Stefan Teipl; Abhay Moghekar; Marilyn S. Albert; William T. Hu; José Antonio Monge Argilés; Ana Gorostidi; Charlotte E. Teunissen; Peter Paul De Deyn; Bradley T. Hyman; José Luis Molinuevo; Giovanni B. Frisoni; Gurutz Linazasoro; Mony J. de Leon; Wiesje M. van der Flier; Philip Scheltens; Kaj Blennow

In a large multicentre sample of cognitively normal subjects, as a function of age, gender and APOE genotype, we studied the frequency of abnormal cerebrospinal fluid levels of Alzheimers disease biomarkers including: total tau, phosphorylated tau and amyloid-β1-42. Fifteen cohorts from 12 different centres with either enzyme-linked immunosorbent assays or Luminex® measurements were selected for this study. Each centre sent nine new cerebrospinal fluid aliquots that were used to measure total tau, phosphorylated tau and amyloid-β1-42 in the Gothenburg laboratory. Seven centres showed a high correlation with the new Gothenburg measurements; therefore, 10 cohorts from these centres are included in the analyses here (1233 healthy control subjects, 40-84 years old). Amyloid-β amyloid status (negative or positive) and neurodegeneration status (negative or positive) was established based on the pathological cerebrospinal fluid Alzheimers disease cut-off values for cerebrospinal fluid amyloid-β1-42 and total tau, respectively. While gender did not affect these biomarker values, APOE genotype modified the age-associated changes in cerebrospinal fluid biomarkers such that APOE ε4 carriers showed stronger age-related changes in cerebrospinal fluid phosphorylated tau, total tau and amyloid-β1-42 values and APOE ε2 carriers showed the opposite effect. At 40 years of age, 76% of the subjects were classified as amyloid negative, neurodegeneration negative and their frequency decreased to 32% at 85 years. The amyloid-positive neurodegeneration-negative group remained stable. The amyloid-negative neurodegeneration-positive group frequency increased slowly from 1% at 44 years to 16% at 85 years, but its frequency was not affected by APOE genotype. The amyloid-positive neurodegeneration-positive frequency increased from 1% at 53 years to 28% at 85 years. Abnormally low cerebrospinal fluid amyloid-β1-42 levels were already frequent in midlife and APOE genotype strongly affects the levels of cerebrospinal fluid amyloid-β1-42, phosphorylated tau and total tau across the lifespan without influencing the frequency of subjects with suspected non-amyloid pathology.


Brain | 2015

Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes.

Ester Cantó; Mar Tintoré; Luisa M. Villar; Carme Costa; Ramil Nurtdinov; José C. Álvarez-Cermeño; Georgina Arrambide; Ferran Reverter; Florian Deisenhammer; Harald Hegen; Mohsen Khademi; Tomas Olsson; Hayrettin Tumani; Eulalia Rodríguez-Martín; Fredrik Piehl; Ales Bartos; Denisa Zimova; Jens Kuhle; Ludwig Kappos; Garcia-Merino Ja; Antonio J. Sánchez; Albert Saiz; Yolanda Blanco; Rogier Q. Hintzen; Naghmeh Jafari; David Brassat; Florian Lauda; Romy Roesler; Konrad Rejdak; Ewa Papuć

Chitinase 3-like 1 (CHI3L1) has been proposed as a biomarker associated with the conversion to clinically definite multiple sclerosis in patients with clinically isolated syndromes, based on the finding of increased cerebrospinal fluid CHI3L1 levels in clinically isolated syndrome patients who later converted to multiple sclerosis compared to those who remained as clinically isolated syndrome. Here, we aimed to validate CHI3L1 as a prognostic biomarker in a large cohort of patients with clinically isolated syndrome. This is a longitudinal cohort study of clinically isolated syndrome patients with clinical, magnetic resonance imaging, and cerebrospinal fluid data prospectively acquired. A total of 813 cerebrospinal fluid samples from patients with clinically isolated syndrome were recruited from 15 European multiple sclerosis centres. Cerebrospinal fluid CHI3L1 levels were measured by enzyme-linked immunosorbent assay. Multivariable Cox regression models were used to investigate the association between cerebrospinal fluid CHI3L1 levels and time to conversion to multiple sclerosis and time to reach Expanded Disability Status Scale 3.0. CHI3L1 levels were higher in patients who converted to clinically definite multiple sclerosis compared to patients who continued as clinically isolated syndrome (P = 8.1 × 10(-11)). In the Cox regression analysis, CHI3L1 levels were a risk factor for conversion to multiple sclerosis (hazard ratio = 1.7; P = 1.1 × 10(-5) using Poser criteria; hazard ratio = 1.6; P = 3.7 × 10(-6) for McDonald criteria) independent of other covariates such as brain magnetic resonance imaging abnormalities and presence of cerebrospinal fluid oligoclonal bands, and were the only significant independent risk factor associated with the development of disability (hazard ratio = 3.8; P = 2.5 × 10(-8)). High CHI3L1 levels were associated with shorter time to multiple sclerosis (P = 3.2 × 10(-9) using Poser criteria; P = 5.6 × 10(-11) for McDonald criteria) and more rapid development of disability (P = 1.8 × 10(-10)). These findings validate cerebrospinal fluid CHI3L1 as a biomarker associated with the conversion to multiple sclerosis and development of disability and reinforce the prognostic role of CHI3L1 in patients with clinically isolated syndrome. We propose that determining cerebrospinal fluid chitinase 3-like 1 levels at the time of a clinically isolated syndrome event will help identify those patients with worse disease prognosis.


Neurology | 2010

Normal CSF ferritin levels in MS suggest against etiologic role of chronic venous insufficiency

V. Worthington; J. Killestein; M.J. Eikelenboom; Charlotte E. Teunissen; Frederik Barkhof; C.H. Polman; Bernard M. J. Uitdehaag; Axel Petzold

Objectives: Chronic cerebrospinal venous insufficiency (CCSVI) has been suggested to be a possible cause of multiple sclerosis (MS). If the presumed mechanism of venous stasis–related parenchymal iron deposition and neurodegeneration were true, then upregulation of intrathecal iron transport proteins may be expected. Methods: This was a cross-sectional (n = 1,408) and longitudinal (n = 29) study on CSF ferritin levels in patients with MS and a range of neurologic disorders. Results: Pathologic (>12 ng/mL) CSF ferritin levels were observed in 4% of the control patients (median 4 ng/mL), 91% of patients with superficial siderosis (75 ng/mL), 73% of patients with a subarachnoid hemorrhage (59 ng/mL), 10% of patients with relapsing-remitting MS (5 ng/mL), 11% of patients with primary progressive MS (6 ng/mL), 23% of patients with secondary progressive MS (5 ng/mL), and 23% of patients with meningoencephalitis (5 ng/mL). In MS, there was no significant change of CSF ferritin levels over the 3-year follow-up period. Conclusion: These data do not support an etiologic role for CCSVI-related parenchymal iron deposition in MS.


Molecular Neurodegeneration | 2016

Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease

Nour K. Majbour; Nishant N. Vaikath; Karin D. van Dijk; Mustafa T. Ardah; Shiji Varghese; Louise Buur Vesterager; Liliana P. Montezinho; Stephen Poole; Bared Safieh-Garabedian; Takahiko Tokuda; Charlotte E. Teunissen; Henk W. Berendse; Wilma D.J. van de Berg; Omar M. A. El-Agnaf

BackgroundDespite decades of intensive research, to date, there is no accepted diagnosis for Parkinson’s disease (PD) based on biochemical analysis of blood or CSF. However, neurodegeneration in the brains of PD patients begins several years before the manifestation of the clinical symptoms, pointing to serious flaw/limitations in this approach.ResultsTo explore the potential use of alpha-synuclein (α-syn) species as candidate biomarkers for PD, we generated specific antibodies directed against wide array of α-syn species, namely total-, oligomeric- and phosphorylated-Ser129-α-syn (t-, o- and p-S129-α-syn). Next we sought to employ our antibodies to develop highly specific ELISA assays to quantify α-syn species in biological samples. Finally we verified the usefulness of our assays in CSF samples from 46 PD patients and 48 age-matched healthy controls. We also assessed the discriminating power of combining multiple CSF α-syn species with classical Alzheimer’s disease biomarkers. The combination of CSF o-/t-α-syn, p-S129-α-syn and p-tau provided the best fitting predictive model for discriminating PD patients from controls. Moreover, CSF o-α-syn levels correlated significantly with the severity of PD motor symptoms (r = -0.37).ConclusionOur new ELISA assays can serve as research tools to address the unmet need for reliable CSF biomarkers for PD and related disorders.


Multiple Sclerosis Journal | 2013

CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome

Michael Khalil; Christian Enzinger; Christian Langkammer; Stefan Ropele; Mader A; Trentini A; Vane Ml; Mirja Wallner-Blazek; Gerhard Bachmaier; Juan J. Archelos; Marleen J.A. Koel-Simmelink; Marinus A. Blankenstein; S Fuchs; Franz Fazekas; Charlotte E. Teunissen

Background: Axonal damage is considered a major cause of disability in multiple sclerosis (MS) and may start early in the disease. Specific biomarkers for this process are of great interest. Objective: To study if cerebrospinal fluid (CSF) biomarkers for axonal damage reflect and predict disease progression already in the earliest stages of the disease, that is, in clinically isolated syndrome (CIS). Methods: We assessed CSF levels of neurofilament heavy (NFH), neurofilament light (NFL) and N-acetylaspartate (NAA) in 67 patients with CIS and 18 controls with neuropsychiatric diseases of non-inflammatory aetiology (NC). Patients with CIS underwent baseline magnetic resonance imaging (MRI) at 3T, and a follow-up MRI after 1 year was obtained in 28 of them. Results: Compared with NC, patients with CIS had higher NFH (p=0.05) and NFL (p<0.001) levels. No significant group differences were found for NAA. Patients’ NFH levels correlated with physical disability (r=0.304, p<0.05) and with change in brain volume over 1 year of follow-up (r=-0.518, p<0.01) but not with change in T2 lesion load. Conclusion: Our results confirm increased neurofilament levels already in CIS being related to the level of physical disability. The association of NFH levels with brain volume but not lesion volume changes supports the association of these markers with axonal damage.

Collaboration


Dive into the Charlotte E. Teunissen's collaboration.

Top Co-Authors

Avatar

Philip Scheltens

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.H. Polman

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joep Killestein

VU University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge