Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte Grootaert is active.

Publication


Featured researches published by Charlotte Grootaert.


Nutrition Reviews | 2011

Propionate as a health-promoting microbial metabolite in the human gut

Elham Hosseini; Charlotte Grootaert; Willy Verstraete; Tom Van de Wiele

Propionate is a major microbial fermentation metabolite in the human gut with putative health effects that extend beyond the gut epithelium. Propionate is thought to lower lipogenesis, serum cholesterol levels, and carcinogenesis in other tissues. Steering microbial propionate production through diet could therefore be a potent strategy to increase health effects from microbial carbohydrate fermentation. The present review first discusses the two main propionate-production pathways and provides an extended gene-based list of microorganisms with the potential to produce propionate. Second, it evaluates the promising potential of arabinoxylan, polydextrose, and L-rhamnose to act as substrates to increase microbial propionate. Third, given the complexity of the gut microbiota, propionate production is approached from a microbial-ecological perspective that includes interaction processes such as cross-feeding mechanisms. Finally, it introduces the development of functional gene-based analytical tools to detect and characterize propionate-producing microorganisms in a complex community. The information in this review may be helpful for designing functional food strategies that aim to promote propionate-associated health benefits.


Applied and Environmental Microbiology | 2010

Microbial Community Development in a Dynamic Gut Model Is Reproducible, Colon Region Specific, and Selective for Bacteroidetes and Clostridium Cluster IX

Pieter Van den Abbeele; Charlotte Grootaert; Massimo Marzorati; Sam Possemiers; Willy Verstraete; Philippe Gérard; Aurélia Bruneau; Sahar El Aidy; Muriel Derrien; Erwin G. Zoetendal; Michiel Kleerebezem; Hauke Smidt; Tom Van de Wiele

ABSTRACT Dynamic, multicompartment in vitro gastrointestinal simulators are often used to monitor gut microbial dynamics and activity. These reactors need to harbor a microbial community that is stable upon inoculation, colon region specific, and relevant to in vivo conditions. Together with the reproducibility of the colonization process, these criteria are often overlooked when the modulatory properties from different treatments are compared. We therefore investigated the microbial colonization process in two identical simulators of the human intestinal microbial ecosystem (SHIME), simultaneously inoculated with the same human fecal microbiota with a high-resolution phylogenetic microarray: the human intestinal tract chip (HITChip). Following inoculation of the in vitro colon compartments, microbial community composition reached steady state after 2 weeks, whereas 3 weeks were required to reach functional stability. This dynamic colonization process was reproducible in both SHIME units and resulted in highly diverse microbial communities which were colon region specific, with the proximal regions harboring saccharolytic microbes (e.g., Bacteroides spp. and Eubacterium spp.) and the distal regions harboring mucin-degrading microbes (e.g., Akkermansia spp.). Importantly, the shift from an in vivo to an in vitro environment resulted in an increased Bacteroidetes/Firmicutes ratio, whereas Clostridium cluster IX (propionate producers) was enriched compared to clusters IV and XIVa (butyrate producers). This was supported by proportionally higher in vitro propionate concentrations. In conclusion, high-resolution analysis of in vitro-cultured gut microbiota offers new insight on the microbial colonization process and indicates the importance of digestive parameters that may be crucial in the development of new in vitro models.


Current Pharmaceutical Design | 2009

The Intestinal Environment in Health and Disease – Recent Insights on the Potential of Intestinal Bacteria to Influence Human Health

Sam Possemiers; Charlotte Grootaert; Joan Vermeiren; Gabriele Gross; Massimo Marzorati; Willy Verstraete; Tom Van de Wiele

The human intestine is colonized by a complex microbial ecosystem, which could be considered as a separate organ within the human host, having a coding capacity which exceeds the liver by a factor 100. On the one hand, this extensive microbiome is closely involved in the first-pass metabolism and bioavailability of food and drug compounds. Understanding to which extent each individuals gut microbiota affects the bioavailability and response to orally administered drugs is therefore a first important challenge towards novel drug development strategies. On the other hand, as our microbiota is directly or indirectly involved in the onset of a number of disease states, a new generation of therapeutics may be developed that affect the structure and functioning of the intestinal microbiota and interfere with their specific cross-talk with the human host. Ultimately, the intestinal microbiota may even be used as a biomarker for impending diseases inside or outside the gastrointestinal tract and for the evaluation of responses to specific therapeutic interventions. This review will therefore highlight the importance of the indigenous microbial community and its enormous metabolic potential, microbe-microbe interactions, mechanisms of host-bacterium cross-talk and will discuss the onset of obesity, a specific disease state in which the role of intestinal bacteria becomes more and more apparent. Understanding the importance of the intestinal ecosystem in these phenomena may open the door for new strategies which target the management of the intestinal microbiome into the desired direction and therefore to a completely new type of nutrition research and pharmaceutical design.


Phytochemistry | 2013

Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells

Andrea Bunea; Dumitriţa Rugină; Zoriţa Sconţa; Raluca Maria Pop; Adela Pintea; Carmen Socaciu; Flaviu Tăbăran; Charlotte Grootaert; Karin Struijs; John VanCamp

Blueberry consumption is associated with health benefits contributing to a reduced risk for cardiovascular disease, diabetes and cancer. The aim of this study was to determine the anthocyanin profile of blueberry extracts and to evaluate their effects on B16-F10 metastatic melanoma murine cells. Seven blueberry cultivars cultivated in Romania were used. The blueberry extracts were purified over an Amberlite XAD-7 resin and a Sephadex LH-20 column, in order to obtain the anthocyanin rich fractions (ARF). The antioxidant activity of the ARF of all cultivars was evaluated by ABTS, CUPRAC and ORAC assays. High performance liquid chromatography followed by electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to identify and quantify individual anthocyanins. The anthocyanin content of tested cultivars ranged from 101.88 to 195.01 mg malvidin-3-glucoside/100g fresh weight. The anthocyanin rich-fraction obtained from cultivar Torro (ARF-T) was shown to have the highest anthocyanin content and antioxidant activity, and inhibited B16-F10 melanoma murine cells proliferation at concentrations higher than 500 μg/ml. In addition, ARF-T stimulated apoptosis and increased total LDH activity in metastatic B16-F10 melanoma murine cells. These results indicate that the anthocyanins from blueberry cultivar could be used as a chemopreventive or adjuvant treatment for metastasis control.


Drug Metabolism Reviews | 2015

Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity

Gerard Bryan Gonzales; Guy Smagghe; Charlotte Grootaert; Moises João Zotti; Katleen Raes; John Van Camp

Abstract Flavonoids are a group of polyphenols that provide health-promoting benefits upon consumption. However, poor bioavailability has been a major hurdle in their use as drugs or nutraceuticals. Low bioavailability has been associated with flavonoid interactions at various stages of the digestion, absorption and distribution process, which is strongly affected by their molecular structure. In this review, we use structure–activity/property relationship to discuss various flavonoid interactions with food matrices, digestive enzymes, intestinal transporters and blood proteins. This approach reveals specific bioactive properties of flavonoids in the gastrointestinal tract as well as various barriers for their bioavailability. In the last part of this review, we use these insights to determine the effect of different structural characteristics on the overall bioavailability of flavonoids. Such information is crucial when flavonoid or flavonoid derivatives are used as active ingredients in foods or drugs.


International Journal of Molecular Sciences | 2015

Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells--A Review.

Senem Kamiloglu; Esra Capanoglu; Charlotte Grootaert; John Van Camp

Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells.


Expert Review of Proteomics | 2012

Angiopoietin-like protein 4: health effects, modulating agents and structure–function relationships

Charlotte Grootaert; Tom Van de Wiele; Willy Verstraete; Marc Bracke; Barbara Vanhoecke

Angiopoietin-like protein 4 (ANGPTL4) has been identified as a multifunctional signal protein. It is produced by a variety of tissues, and is secreted into the bloodstream in glycosylated, oligomerized, native and cleaved isoforms to modulate physiological events such as angiogenesis, cell differentiation and the crosstalk between liver, brain, adipose and muscle tissue in lipid and glucose metabolism. In addition, the expression and isoform appearance of ANGPTL4 are modified by the intestinal microbiota. With an eye on an effective strategy to improve health using ANGPTL4, we will focus on: health issues associated with ANGPTL4 expression, including obesity, Type 2 diabetes, cardiovascular diseases and cancer; several modulators of ANGPTL4 of chemical, microbiological, food and host origin; and the correlation of the specific ANGPTL4 isoforms with these modulators and their health effects.


Environmental Microbiology | 2011

Bacterial monocultures, propionate, butyrate and H2O2 modulate the expression, secretion and structure of the fasting-induced adipose factor in gut epithelial cell lines

Charlotte Grootaert; Tom Van de Wiele; Ilse Van Roosbroeck; Sam Possemiers; Anne-Sophie Vercoutter-Edouart; Willy Verstraete; Marc Bracke; Barbara Vanhoecke

Previous research showed that an intestinal microbial community represses the fasting-induced adipose factor (FIAF) in the gut epithelium, thereby increasing fat storage in the host. This study was designed to investigate the overall effect of different bacterial species and metabolites on FIAF in intestinal (Caco-2, HT-29 and HCT-116) and hepatic (HepG2) cancer cell lines. First, we showed that FIAF was present in different isoforms, and secreted as N-glycosylated proteins, exclusively at the basal side of the cell monolayer. Second, co-incubation of cell lines with bacterial monocultures and metabolites altered both FIAF production and isoform appearance. Propionate and/or butyrate treatment increased FIAF expression and cleavage in all tested cell lines. In contrast, different bacteria induced cell line-specific FIAF modulation. Clostridium perfringens induced FIAF isoform changes in Caco-2 cells. Enterococcus faecalis and Bacteroides thetaiotaomicron treatment resulted in cell line-specific FIAF increases, whereas Escherichia coli significantly decreased FIAF expression in HCT-116 cells. Treatment with H(2) O(2) and peroxide-producing E. faecalis strains induced FIAF isoform changes in Caco-2 cells. Since bacteria and bacterial metabolites alter both FIAF production and isoform appearance, further investigation may reveal an important role for bacteria in FIAF-regulated physiological processes, such as cell differentiation and fat metabolism.


Journal of Agricultural and Food Chemistry | 2016

Bioaccessibility of Polyphenols from Plant-Processing Byproducts of Black Carrot (Daucus carota L.).

Senem Kamiloglu; Esra Capanoglu; Fatma Damla Bilen; Gerard Bryan Gonzales; Charlotte Grootaert; Tom Van de Wiele; John Van Camp

Plant-processing byproducts of black carrot represent an important disposal problem for the industry; however, they are also promising sources of polyphenols, especially anthocyanins. The present study focused on the changes in polyphenols from black carrot, peel, and pomace during in vitro gastrointestinal digestion. Total phenolic content (TPC), total monomeric anthocyanin content (TMAC), and total antioxidant capacity (TAC) were determined using spectrophotometric methods, whereas identification and quantification of polyphenols were carried out using UPLC-ESI-MS(E) and HPLC-DAD, respectively. TPC, TMAC, and TAC significantly decreased (23-82%) as a result of in vitro gastrointestinal digestion. Nevertheless, the amount of pomace anthocyanins released at all stages of in vitro gastrointestinal digestion was higher than black carrot anthocyanins, suggesting that pomace may be a better source of bioaccessible anthocyanins. Overall, the current study highlighted black carrot byproducts as substantial sources of polyphenols, which may be used to enrich food products.


Scientific Reports | 2017

Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity

Annelies Geirnaert; Marta Calatayud; Charlotte Grootaert; Debby Laukens; Sarah Devriese; Guy Smagghe; Martine De Vos; Nico Boon; Tom Van de Wiele

The management of the dysbiosed gut microbiota in inflammatory bowel diseases (IBD) is gaining more attention as a novel target to control this disease. Probiotic treatment with butyrate-producing bacteria has therapeutic potential since these bacteria are depleted in IBD patients and butyrate has beneficial effects on epithelial barrier function and overall gut health. However, studies assessing the effect of probiotic supplementation on microbe-microbe and host-microbe interactions are rare. In this study, butyrate-producing bacteria (three mono-species and one multispecies mix) were supplemented to the fecal microbial communities of ten Crohn’s disease (CD) patients in an in vitro system simulating the mucus- and lumen-associated microbiota. Effects of supplementation in short-chain fatty acid levels, bacterial colonization of mucus environment and intestinal epithelial barrier function were evaluated. Treatment with F. prausnitzii and the mix of six butyrate-producers significantly increased the butyrate production by 5–11 mol%, and colonization capacity in mucus- and lumen-associated CD microbiota. Treatments with B. pullicaecorum 25-3T and the mix of six butyrate-producers improved epithelial barrier integrity in vitro. This study provides proof-of-concept data for the therapeutic potential of butyrate-producing bacteria in CD and supports the future preclinical development of a probiotic product containing butyrate-producing species.

Collaboration


Dive into the Charlotte Grootaert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Senem Kamiloglu

Istanbul Technical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge