Charlotte Guyader
Netherlands Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charlotte Guyader.
Clinical Cancer Research | 2007
Elisabetta Marangoni; Anne Vincent-Salomon; Nathalie Auger; Armelle Degeorges; Franck Assayag; Patricia de Cremoux; Ludmilla de Plater; Charlotte Guyader; Gonzague de Pinieux; Jean-Gabriel Judde; Magali Rebucci; Carine Tran-Perennou; Xavier Sastre-Garau; Brigitte Sigal-Zafrani; Olivier Delattre; V. Dieras; Marie-France Poupon
Purpose: To establish a panel of human breast cancer (HBC) xenografts in immunodeficient mice suitable for pharmacologic preclinical assays. Experimental Design: 200 samples of HBCs were grafted into Swiss nude mice. Twenty-five transplantable xenografts were established (12.5%). Their characterization included histology, p53 status, genetic analysis by array comparative genomic hybridization, gene expression by Western blotting, and quantitative reverse transcription-PCR. Biological profiles of nine xenografts were compared with those of the corresponding patients tumor. Chemosensitivities of 17 xenografts to a combination of Adriamycin and cyclophosphamide (AC), docetaxel, trastuzumab, and Degarelix were evaluated. Results: Almost all patient tumors established as xenografts displayed an aggressive phenotype, i.e., high-grade, triple-negative status. The histology of the xenografts recapitulated the features of the original tumors. Mutation of p53 and inactivation of Rb and PTEN proteins were found in 83%, 30%, and 42% of HBC xenografts, respectively. Two HBCx had an ERBB2 (HER2) amplification. Large variations were observed in the expression of HER family receptors and in genomic profiles. Genomic alterations were close to those of original samples in paired tumors. Three xenografts formed lung metastases. A total of 15 of the 17 HBCx (88%) responded to AC, and 8 (47%) responded to docetaxel. One ERBB2-amplified xenograft responded to trastuzumab, whereas the other did not. The drug response of HBC xenografts was concordant with that of the patients tumor in five of seven analyzable cases. Conclusions: This panel of breast cancer xenografts includes 15 triple-negative, one ER positive and 2 ERBB2 positive. This panel represents a useful preclinical tool for testing new agents and protocols and for further exploration of the biological basis of drug responses.
Breast Cancer Research | 2012
Fabien Reyal; Charlotte Guyader; Charles Decraene; Carlo Lucchesi; Nathalie Auger; Franck Assayag; Ludmilla de Plater; David Gentien; Marie-France Poupon; Paul Cottu; Patricia de Cremoux; Pierre Gestraud; Anne Vincent-Salomon; Jean-Jacques Fontaine; Sergio Roman-Roman; Olivier Delattre; Didier Decaudin; Elisabetta Marangoni
IntroductionIdentification of new therapeutic agents for breast cancer (BC) requires preclinical models that reproduce the molecular characteristics of their respective clinical tumors. In this work, we analyzed the genomic and gene expression profiles of human BC xenografts and the corresponding patient tumors.MethodsEighteen BC xenografts were obtained by grafting tumor fragments from patients into Swiss nude mice. Molecular characterization of patient tumors and xenografts was performed by DNA copy number analysis and gene expression analysis using Affymetrix Microarrays.ResultsComparison analysis showed that 14/18 pairs of tumors shared more than 56% of copy number alterations (CNA). Unsupervised hierarchical clustering analysis showed that 16/18 pairs segregated together, confirming the similarity between tumor pairs. Analysis of recurrent CNA changes between patient tumors and xenografts showed losses in 176 chromosomal regions and gains in 202 chromosomal regions. Gene expression profile analysis showed that less than 5% of genes had recurrent variations between patient tumors and their respective xenografts; these genes largely corresponded to human stromal compartment genes. Finally, analysis of different passages of the same tumor showed that sequential mouse-to-mouse tumor grafts did not affect genomic rearrangements or gene expression profiles, suggesting genetic stability of these models over time.ConclusionsThis panel of human BC xenografts maintains the overall genomic and gene expression profile of the corresponding patient tumors and remains stable throughout sequential in vivo generations. The observed genomic profile and gene expression differences appear to be due to the loss of human stromal genes. These xenografts, therefore, represent a validated model for preclinical investigation of new therapeutic agents.
The EMBO Journal | 2015
Rosa Planells-Cases; Darius Lutter; Charlotte Guyader; Nora Merete Gerhards; Florian Ullrich; Deborah A Elger; Aslı Küçükosmanoğlu; Guotai Xu; Felizia K. Voss; S. Momsen Reincke; Tobias Stauber; Vincent A. Blomen; Daniel J. Vis; Lodewyk F. A. Wessels; Thijn R. Brummelkamp; Piet Borst; Sven Rottenberg; Thomas J. Jentsch
Although platinum‐based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume‐regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8‐dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug‐induced apoptosis independently from drug uptake, possibly by impairing VRAC‐dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D‐containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.
British Journal of Cancer | 2010
L. De Plater; A. Laugé; Charlotte Guyader; M.-F. Poupon; Franck Assayag; P. de Cremoux; Anne Vincent-Salomon; Dominique Stoppa-Lyonnet; Brigitte Sigal-Zafrani; J.J. Fontaine; Rachel Brough; Christopher J. Lord; Alan Ashworth; P. Cottu; Didier Decaudin; E. Marangoni
Background:The BRCA2 gene is responsible for a high number of hereditary breast and ovarian cancers, and studies of the BRCA2 biological functions are limited by the lack of models that resemble the patients tumour features. The aim of this study was to establish and characterise a new human breast carcinoma xenograft obtained from a woman carrying a germline BRCA2 mutation.Methods:A transplantable xenograft was obtained by grafting a breast cancer sample into nude mice. The biological and genetic profiles of the xenograft were compared with that of the patients tumour using histology, immunohistochemistry (IHC), BRCA2 sequencing, comparative genomic hybridisation (CGH), and qRT–PCR. Tumour response to standard chemotherapies was evaluated.Results:Histological profile identified the tumour as a basal-like triple-negative breast cancer. Targeted BRCA2 DNA sequencing of the xenograft showed the presence of the mutation previously identified in the carrier. Comparative genomic hybridisation array profiles of the primary tumour and the xenograft revealed a high number of similar genetic alterations. The therapeutic assessment of the xenograft showed sensitivity to anthracyclin-based chemotherapy and resistance to docetaxel. The xenograft was also highly sensitive to radiotherapy and cisplatin-based treatments.Conclusions:This study describes a new human breast cancer xenograft obtained from a BRCA2-mutated patient. This xenograft provides a new model for the pre-clinical drug development and for the exploration of the drug response biological basis.
British Journal of Cancer | 2007
Marie-Emmanuelle Legrier; Stéphane Oudard; Jean-Gabriel Judde; Charlotte Guyader; G. De Pinieux; Karine Boyé; P. de Cremoux; Bernard Dutrillaux; M.-F. Poupon
Antitumour activity of docetaxel (Taxotere®) in hormone-dependent (HD) and hormone-independent (HID) prostate cancer PAC120 xenograft model was previously reported, and its level was associated with HER2 protein expression. In the present study, we evaluate the antitumour effects of docetaxel combined with trastuzumab (Herceptin®), an anti-HER2 antibody. Although trastuzumab alone had no effect on tumour growth, it potentiated the antitumour activity of docetaxel in HD tumours and more strongly in HID variants. Using the HID28 variant, we show that docetaxel treatment of tumour-bearing mice induces an increased HER2 mRNA expression of the tyrosine kinase receptor of 25-fold 24 h after docetaxel treatment, while HER2 protein and p-AKT decreased. This was followed by an increase of HER2 protein 3 days (two-fold) after docetaxel treatment and by a strong HER2 release in the serum of treated mice; expression of phospho-ERK, p27, BCL2 and HSP70 concomitantly increased. Similar molecular alterations were induced by docetaxel plus trastuzumab combination, except for that there was a transient and complete disappearance of AR and HSP90 proteins 24 h after treatment. We show that in addition to its known effects on tubulin and mitotic spindles, docetaxel induces complex signalisation pathway mechanisms in surviving cells, including HER2, which can be pharmacologically targeted. This study suggests that the docetaxel/trastuzumab combination may prove an effective therapeutic approach for HER2-expressing hormone-refractory prostate cancer.
Cancer Research | 2015
Janneke E. Jaspers; Wendy Sol; Ariena Kersbergen; Andreas Schlicker; Charlotte Guyader; Guotai Xu; Lodewyk F. A. Wessels; Piet Borst; Jos Jonkers; Sven Rottenberg
Pan- or multidrug resistance is a central problem in clinical oncology. Here, we use a genetically engineered mouse model of BRCA2-associated hereditary breast cancer to study drug resistance to several types of chemotherapy and PARP inhibition. We found that multidrug resistance was strongly associated with an EMT-like sarcomatoid phenotype and high expression of the Abcb1b gene, which encodes the drug efflux transporter P-glycoprotein. Inhibition of P-glycoprotein could partly resensitize sarcomatoid tumors to the PARP inhibitor olaparib, docetaxel, and doxorubicin. We propose that multidrug resistance is a multifactorial process and that mouse models are useful to unravel this.
PLOS ONE | 2012
Charlotte Guyader; Jocelyn Céraline; Eléonore Gravier; Aurélie Morin; Sandrine Michel; Eva Erdmann; Gonzague de Pinieux; Florence Cabon; Jean-Pierre Bergerat; Marie-France Poupon; S. Oudard
Almost all prostate cancers respond to androgen deprivation treatment but many recur. We postulated that risk of hormone escape -frequency and delay- are influenced by hormone therapy modalities. More, hormone therapies induce crucial biological changes involving androgen receptors; some might be targets for escape prevention. We investigated the relationship between the androgen deprivation treatment and the risk of recurrence using nude mice bearing the high grade, hormone-dependent human prostate cancer xenograft PAC120. Tumor-bearing mice were treated by Luteinizing-Hormone Releasing Hormone (LHRH) antagonist alone, continuous or intermittent regimen, or combined with androgen receptor (AR) antagonists (bicalutamide or flutamide). Tumor growth was monitored. Biological changes were studied as for genomic alterations, AR mutations and protein expression in a large series of recurrent tumors according to hormone therapy modalities. Therapies targeting Her-2 or AKT were tested in combination with castration. All statistical tests were two-sided. Tumor growth was inhibited by continuous administration of the LH-RH antagonist degarelix (castration), but 40% of tumors recurred. Intermittent castration or complete blockade induced by degarelix and antiandrogens combination, inhibited tumor growth but increased the risk of recurrence (RR) as compared to continuous castration (RRintermittent: 14.5, RRcomplete blockade: 6.5 and 1.35). All recurrent tumors displayed new quantitative genetic alterations and AR mutations, whatever the treatment modalities. AR amplification was found after complete blockade. Increased expression of Her-2/neu with frequent ERK/AKT activation was detected in all variants. Combination of castration with a Her-2/neu inhibitor decreased recurrence risk (0.17) and combination with an mTOR inhibitor prevented it. Anti-hormone treatments influence risk of recurrence although tumor growth inhibition was initially similar. Recurrent tumors displayed genetic instability, AR mutations, and alterations of phosphorylation pathways. We postulated that Her-2/AKT pathways allowed salvage of tumor cells under castration and we demonstrated that their inhibition prevented tumor recurrence in our model.
International Journal of Cancer | 2009
Marie-Emmanuelle Legrier; Charlotte Guyader; Jocelyn Céraline; Bernard Dutrillaux; Stéphane Oudard; Marie-France Poupon; Nathalie Auger
Lack of hormone dependency in prostate cancers is an irreversible event that occurs through generation of genomic instability induced by androgen deprivation. Indeed, the cytogenetic profile of hormone‐dependent (HD) prostate cancer remains stable as long as it received a hormone supply, whereas the profile of hormone‐independent (HID) variants acquired new and various alterations. This is demonstrated here using a HD xenografted model of a human prostate cancer, PAC120, transplanted for 11 years into male nude mice and 4 HID variants obtained by surgical castration. Cytogenetic analysis, done by karyotype, FISH, CGH and array‐CGH, shows that PAC120 at early passage presents numerous chromosomal alterations. Very few additional alterations were found between the 5th and 47th passages, indicating the stability of the parental tumor. HID variants largely maintained the core of chromosomal alterations of PAC120 — losses at 6q, 7p, 12q, 15q and 17q sites. However, each HID variant displayed a number of new alterations, almost all being specific to each variant and very few shared by all. None of the HID had androgen receptor mutations. Our study indicates that hormone castration is responsible for genomic instability generating new cytogenetic abnormalities susceptible to alter the properties of cancer cell associated with tumor progression, such as increased cell survival and ability to metastasize.
Clinical Cancer Research | 2017
Marina Pajic; Sohvi Blatter; Charlotte Guyader; Maaike Gonggrijp; Ariena Kersbergen; Aslı Küçükosmanoğlu; Wendy Sol; Rinske Drost; Jos Jonkers; Piet Borst; Sven Rottenberg
Purpose: We aimed to characterize and target drug-tolerant BRCA1-deficient tumor cells that cause residual disease and subsequent tumor relapse. Experimental Design: We studied responses to various mono- and bifunctional alkylating agents in a genetically engineered mouse model for BRCA1/p53-mutant breast cancer. Because of the large intragenic deletion of the Brca1 gene, no restoration of BRCA1 function is possible, and therefore, no BRCA1-dependent acquired resistance occurs. To characterize the cell-cycle stage from which Brca1−/−;p53−/− mammary tumors arise after cisplatin treatment, we introduced the fluorescent ubiquitination-based cell-cycle indicator (FUCCI) construct into the tumor cells. Results: Despite repeated sensitivity to the MTD of platinum drugs, the Brca1-mutated mammary tumors are not eradicated, not even by a frequent dosing schedule. We show that relapse comes from single-nucleated cells delaying entry into the S-phase. Such slowly cycling cells, which are present within the drug-naïve tumors, are enriched in tumor remnants. Using the FUCCI construct, we identified nonfluorescent G0-like cells as the population most tolerant to platinum drugs. Intriguingly, these cells are more sensitive to the DNA-crosslinking agent nimustine, resulting in an increased number of multinucleated cells that lack clonogenicity. This is consistent with our in vivo finding that the nimustine MTD, among several alkylating agents, is the most effective in eradicating Brca1-mutated mouse mammary tumors. Conclusions: Our data show that targeting G0-like cells is crucial for the eradication of BRCA1/p53–deficient tumor cells. This can be achieved with selected alkylating agents such as nimustine. Clin Cancer Res; 23(22); 7020–33. ©2017 AACR.
Anti-Cancer Drugs | 2010
Ahmed Dahmani; Ludmilla de Plater; Charlotte Guyader; Jean-Jacques Fontaine; Aurélie Berniard; Franck Assayag; Philippe Beuzeboc; Elisabetta Marangoni; Fariba Nemati; Marie-France Poupon; Christophe Pasik; Stéphane Oudard; Didier Decaudin
Androgen-dependent and castration-resistant prostate cancer (PC) is usually sensitive to docetaxel chemotherapy. Nevertheless, docetaxel resistance frequently appears after several cycles of treatment, raising the problem of salvage treatment for docetaxel-resistant PC patients. Although the combination of docetaxel and estramustine prolongs metastasis-free and overall survival of patients with androgen-independent PC, the use of this modality remains limited in elderly patients or patients with several comorbidities, especially vascular disease or gastrointestinal toxicity, because of unacceptable toxicity including venous thrombosis. The aims of this study were therefore (i) to evaluate the in-vivo efficacy of estramustine combined with docetaxel since initial tumor growth and following the appearance of docetaxel resistance in the androgen-dependent human PC xenograft PAC120, and (ii) to evaluate the efficacy of estramustine in six human androgen-independent PC models derived from PAC120. In docetaxel-resistant tumor-bearing mice, estramustine alone induced a TGD2 of 18 days, whereas the combination of docetaxel and estramustine induced a TGD2 of 50 days (P<0.05) with no significantly different overall survival of mice treated by docetaxel and estramustine since day 1 or since the onset of resistance to docetaxel. Among the six human androgen-independent tumors treated with estramustine alone, two highly sensitive models, two intermediate responding tumors, and two resistant models were observed. Altogether, these results suggest that estramustine should be combined with docetaxel in PC patients, but the use of this treatment could be limited, particularly in elderly patients, to docetaxel-resistant cases.