Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte K. Billington is active.

Publication


Featured researches published by Charlotte K. Billington.


The Lancet Respiratory Medicine | 2015

Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank.

Louise V. Wain; Nick Shrine; Suzanne Miller; Victoria E. Jackson; Ioanna Ntalla; María Soler Artigas; Charlotte K. Billington; Abdul Kader Kheirallah; Richard J. Allen; James P. Cook; Kelly Probert; Ma'en Obeidat; Yohan Bossé; Ke Hao; Dirkje S. Postma; Peter D. Paré; Adaikalavan Ramasamy; Reedik Mägi; Evelin Mihailov; Eva Reinmaa; Erik Melén; Jared O'Connell; Eleni Frangou; Olivier Delaneau; Colin Freeman; Desislava Petkova; Mark I. McCarthy; Ian Sayers; Panos Deloukas; Richard Hubbard

Summary Background Understanding the genetic basis of airflow obstruction and smoking behaviour is key to determining the pathophysiology of chronic obstructive pulmonary disease (COPD). We used UK Biobank data to study the genetic causes of smoking behaviour and lung health. Methods We sampled individuals of European ancestry from UK Biobank, from the middle and extremes of the forced expiratory volume in 1 s (FEV1) distribution among heavy smokers (mean 35 pack-years) and never smokers. We developed a custom array for UK Biobank to provide optimum genome-wide coverage of common and low-frequency variants, dense coverage of genomic regions already implicated in lung health and disease, and to assay rare coding variants relevant to the UK population. We investigated whether there were shared genetic causes between different phenotypes defined by extremes of FEV1. We also looked for novel variants associated with extremes of FEV1 and smoking behaviour and assessed regions of the genome that had already shown evidence for a role in lung health and disease. We set genome-wide significance at p<5 × 10−8. Findings UK Biobank participants were recruited from March 15, 2006, to July 7, 2010. Sample selection for the UK BiLEVE study started on Nov 22, 2012, and was completed on Dec 20, 2012. We selected 50 008 unique samples: 10 002 individuals with low FEV1, 10 000 with average FEV1, and 5002 with high FEV1 from each of the heavy smoker and never smoker groups. We noted a substantial sharing of genetic causes of low FEV1 between heavy smokers and never smokers (p=2·29 × 10−16) and between individuals with and without doctor-diagnosed asthma (p=6·06 × 10−11). We discovered six novel genome-wide significant signals of association with extremes of FEV1, including signals at four novel loci (KANSL1, TSEN54, TET2, and RBM19/TBX5) and independent signals at two previously reported loci (NPNT and HLA-DQB1/HLA-DQA2). These variants also showed association with COPD, including in individuals with no history of smoking. The number of copies of a 150 kb region containing the 5′ end of KANSL1, a gene that is important for epigenetic gene regulation, was associated with extremes of FEV1. We also discovered five new genome-wide significant signals for smoking behaviour, including a variant in NCAM1 (chromosome 11) and a variant on chromosome 2 (between TEX41 and PABPC1P2) that has a trans effect on expression of NCAM1 in brain tissue. Interpretation By sampling from the extremes of the lung function distribution in UK Biobank, we identified novel genetic causes of lung function and smoking behaviour. These results provide new insight into the specific mechanisms underlying airflow obstruction, COPD, and tobacco addiction, and show substantial shared genetic architecture underlying airflow obstruction across individuals, irrespective of smoking behaviour and other airway disease. Funding Medical Research Council.


Pulmonary Pharmacology & Therapeutics | 2013

cAMP regulation of airway smooth muscle function.

Charlotte K. Billington; Oluwaseun O. Ojo; Raymond B. Penn; Satoru Ito

Agonists activating β(2)-adrenoceptors (β(2)ARs) on airway smooth muscle (ASM) are the drug of choice for rescue from acute bronchoconstriction in patients with both asthma and chronic obstructive pulmonary disease (COPD). Moreover, the use of long-acting β-agonists combined with inhaled corticosteroids constitutes an important maintenance therapy for these diseases. β-Agonists are effective bronchodilators due primarily to their ability to antagonize ASM contraction. The presumed cellular mechanism of action involves the generation of intracellular cAMP, which in turn can activate the effector molecules cAMP-dependent protein kinase (PKA) and Epac. Other agents such as prostaglandin E(2) and phosphodiesterase inhibitors that also increase intracellular cAMP levels in ASM, can also antagonize ASM contraction, and inhibit other ASM functions including proliferation and migration. Therefore, β(2)ARs and cAMP are key players in combating the pathophysiology of airway narrowing and remodeling. However, limitations of β-agonist therapy due to drug tachyphylaxis related to β(2)AR desensitization, and recent findings regarding the manner in which β(2)ARs and cAMP signal, have raised new and interesting questions about these well-studied molecules. In this review we discuss current concepts regarding β(2)ARs and cAMP in the regulation of ASM cell functions and their therapeutic roles in asthma and COPD.


Journal of Clinical Investigation | 1998

Regulation of proliferation of human colonic subepithelial myofibroblasts by mediators important in intestinal inflammation.

Timothy M. Jobson; Charlotte K. Billington; Ian P. Hall

An increase in myofibroblast number may be necessary for wound healing but may also lead to postinflammatory scarring. We have, therefore, studied the role of mediators important in inflammatory bowel disease in regulating proliferation of human colonic myofibroblasts. Using primary cultures of these cells, we have shown increases in [3H]thymidine incorporation in response to platelet-derived growth factor (EC50 = 14 ng/ml), basic fibroblast growth factor (EC50 = 2.2 ng/ml), and epidermal growth factor (EC50 = 1.1 ng/ml). Coulter counting of cell suspensions demonstrated increases in cell number with these growth factors along with insulin-like growth factor-I and -II. In addition the proinflammatory cytokines IL-1beta and TNF-alpha produced increases in [3H]thymidine incorporation. IL-1beta and platelet-derived growth factor together produced an increase in [3H]thymidine greater than either agonist alone; this effect was not, however, seen when we examined changes in cell numbers. Finally, we demonstrate a mechanism whereby these responses may be downregulated: vasoactive intestinal peptide (1 microM) elevates cyclic AwMP in these cells 4. 2-fold over control and produces a dose-related inhibition of platelet-derived growth factor-driven proliferation with a maximum inhibition of 33% at 1 microM.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1999

Modulation of human airway smooth muscle proliferation by type 3 phosphodiesterase inhibition.

Charlotte K. Billington; Sunil K. Joseph; Caroline Swan; Mark Scott; Timothy M. Jobson; Ian P. Hall

Elevation in cell cAMP content can inhibit mitogenic signaling in cultured human airway smooth muscle (HASM) cells. We studied the effects of the type 3-selective phosphodiesterase inhibitor siguazodan, the type 4-selective phosphodiesterase inhibitor rolipram, and the nonselective inhibitor 3-isobutyl-1-methylxanthine (IBMX) on proliferation of cultured HASM cells. At concentrations selective for the type 3 phosphodiesterase isoform, siguazodan inhibited both [3H]thymidine incorporation (IC50 2 microM) and the increase in cell number (10 microM; 64% reduction) induced by platelet-derived growth factor-BB (20 ng/ml). These effects were mimicked by IBMX. At concentrations selective for type 4 phosphodiesterase inhibition, rolipram was without effect. A 20-min exposure to siguazodan and rolipram did not increase whole cell cAMP levels. However, in HASM cells transfected with a cAMP-responsive luciferase reporter (p6CRE/Luc), increases in cAMP-driven luciferase expression were seen with siguazodan (3.9-fold) and IBMX (16.5-fold). These data suggest that inhibition of the type 3 phosphodiesterase isoform present in airway smooth muscle results in inhibition of mitogenic signaling, possibly through an increase in cAMP-driven gene expression.Elevation in cell cAMP content can inhibit mitogenic signaling in cultured human airway smooth muscle (HASM) cells. We studied the effects of the type 3-selective phosphodiesterase inhibitor siguazodan, the type 4-selective phosphodiesterase inhibitor rolipram, and the nonselective inhibitor 3-isobutyl-1-methylxanthine (IBMX) on proliferation of cultured HASM cells. At concentrations selective for the type 3 phosphodiesterase isoform, siguazodan inhibited both [3H]thymidine incorporation (IC50 2 μM) and the increase in cell number (10 μM; 64% reduction) induced by platelet-derived growth factor-BB (20 ng/ml). These effects were mimicked by IBMX. At concentrations selective for type 4 phosphodiesterase inhibition, rolipram was without effect. A 20-min exposure to siguazodan and rolipram did not increase whole cell cAMP levels. However, in HASM cells transfected with a cAMP-responsive luciferase reporter (p6CRE/Luc), increases in cAMP-driven luciferase expression were seen with siguazodan (3.9-fold) and IBMX (16.5-fold). These data suggest that inhibition of the type 3 phosphodiesterase isoform present in airway smooth muscle results in inhibition of mitogenic signaling, possibly through an increase in cAMP-driven gene expression.


British Journal of Pharmacology | 2012

Novel cAMP signalling paradigms: therapeutic implications for airway disease

Charlotte K. Billington; Ian P. Hall

Since its discovery over 50 years ago, cAMP has been the archetypal second messenger introducing students to the concept of cell signalling at the simplest level. As explored in this review, however, there are many more facets to cAMP signalling than the path from Gs‐coupled receptor to adenylyl cyclase (AC) to cAMP to PKA to biological effect. After a brief description of this canonical cAMP signalling pathway, a snapshot is provided of the novel paradigms of cAMP signalling. As in the airway the cAMP pathway relays the major bronchorelaxant signal and as such is the target for frontline therapy for asthma and COPD, particular emphasis is given to airway disease and therapy. Areas discussed include biased agonism, continued signalling following internalization, modulation of cAMP by AC, control of cAMP degradation, cAMP and calcium crosstalk, Epac‐mediated signalling and finally the implications of altered genotypes will be considered.


PLOS ONE | 2013

GSTCD and INTS12 regulation and expression in the human lung.

Ma’en Obeidat; Suzanne Miller; Kelly Probert; Charlotte K. Billington; Amanda P. Henry; Emily Hodge; Carl P. Nelson; Ceri E. Stewart; Caroline Swan; Louise V. Wain; María Soler Artigas; Erik Melén; Kevin Ushey; Ke Hao; Maxime Lamontagne; Yohan Bossé; Dirkje S. Postma; Martin D. Tobin; Ian Sayers; Ian P. Hall

Genome-Wide Association Study (GWAS) meta-analyses have identified a strong association signal for lung function, which maps to a region on 4q24 containing two oppositely transcribed genes: glutathione S-transferase, C-terminal domain containing (GSTCD) and integrator complex subunit 12 (INTS12). Both genes were found to be expressed in a range of human airway cell types. The promoter regions and transcription start sites were determined in mRNA from human lung and a novel splice variant was identified for each gene. We obtained the following evidence for GSTCD and INTS12 co-regulation and expression: (i) correlated mRNA expression was observed both via Q-PCR and in a lung expression quantitative trait loci (eQTL) study, (ii) induction of both GSTCD and INTS12 mRNA expression in human airway smooth muscle cells was seen in response to TGFβ1, (iii) a lung eQTL study revealed that both GSTCD and INTS12 mRNA levels positively correlate with percent predicted FEV1, and (iv) FEV1 GWAS associated SNPs in 4q24 were found to act as an eQTL for INTS12 in a number of tissues. In fixed sections of human lung tissue, GSTCD protein expression was ubiquitous, whereas INTS12 expression was predominantly in epithelial cells and pneumocytes. During human fetal lung development, GSTCD protein expression was observed to be highest at the earlier pseudoglandular stage (10-12 weeks) compared with the later canalicular stage (17-19 weeks), whereas INTS12 expression levels did not alter throughout these stages. Knowledge of the transcriptional and translational regulation and expression of GSTCD and INTS12 provides important insights into the potential role of these genes in determining lung function. Future work is warranted to fully define the functions of INTS12 and GSTCD.


Pulmonary Pharmacology & Therapeutics | 2013

Emerging airway smooth muscle targets to treat asthma.

Sana Siddiqui; Naresh Singh Redhu; Oluwaseun O. Ojo; Bo Liu; Nneka Irechukwu; Charlotte K. Billington; Luke J. Janssen; Lyn M. Moir

Asthma is characterized in part by variable airflow obstruction and non-specific hyperresponsiveness to a variety of bronchoconstrictors, both of which are mediated by the airway smooth muscle (ASM). The ASM is also involved in the airway inflammation and airway wall remodeling observed in asthma. For all these reasons, the ASM provides an important target for the treatment of asthma. Several classes of drugs were developed decades ago which targeted the ASM - including β-agonists, anti-cholinergics, anti-histamines and anti-leukotrienes - but no substantially new class of drug has appeared recently. In this review, we summarize the on-going work of several laboratories aimed at producing novel targets and/or tools for the treatment of asthma. These range from receptors and ion channels on the ASM plasmalemma, to intracellular effectors (particularly those related to cyclic nucleotide signaling, calcium-homeostasis and phosphorylation cascades), to anti-IgE therapy and outright destruction of the ASM itself.


PLOS ONE | 2014

The Role of Inflammation Resolution Speed in Airway Smooth Muscle Mass Accumulation in Asthma: Insight from a Theoretical Model

Igor L. Chernyavsky; Huguette Croisier; Lloyd A. C. Chapman; Laura S. Kimpton; Jonathan E. Hiorns; Bindi S. Brook; Oliver E. Jensen; Charlotte K. Billington; Ian P. Hall; Simon R. Johnson

Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM) mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models.


British Journal of Pharmacology | 2009

Pharmacogenetic characterization of indacaterol, a novel β2-adrenoceptor agonist

Ian Sayers; J Hawley; Ceri E. Stewart; Charlotte K. Billington; Amanda P. Henry; Jr Leighton-Davies; Steven J. Charlton; Ian P. Hall

Indacaterol is a novel β2‐adrenoceptor agonist in development for the treatment of chronic obstructive pulmonary disease. The aim of this study was to investigate the comparative pharmacology of indacaterol in recombinant cells expressing the common polymorphic variants of the human β2‐adrenoceptor and in human primary airway smooth muscle (ASM) cells.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Can lineage specific markers be identified to characterize mesenchyme-derived cell populations in the human airways?

Shailendra R. Singh; Charlotte K. Billington; Ian Sayers; Ian P. Hall

Mesenchyme-derived cells in the airway wall including airway smooth muscle cells, fibroblasts, and myofibroblasts are known to play important roles in airway remodeling. The lack of specific phenotypical markers makes it difficult to define these cell populations in primary cultures. Most relevant studies to date have used animal airway tissues, vascular tissues, or transformed cell lines with only limited studies attempting to phenotypically characterize human airway mesenchymal cells. The objectives of this study were to evaluate reported markers and identify novel markers to define these cell types. We could not identify any specific marker to define these cell populations in vitro that permitted unequivocal identification using immunocytochemistry. However, characteristic filamentous alpha-smooth muscle actin distribution was observed in a significant ( approximately 25%) proportion of human airway smooth muscle cells, whereas this was not observed in airway fibroblasts. A significantly higher proportion of airway fibroblasts expressed alpha(1)- and alpha(2)-integrin receptors compared with human airway smooth muscle cells as assessed by fluorescence activated cell sorting. Global gene expression profiling identified aldo-keto reductase 1C3 (AKR1C3) and cathepsin K as being novel markers to define airway smooth muscle cells, whereas integrin-alpha(8) (ITGA8) and thromboxane synthase 1 (TBXAS1) were identified as novel airway fibroblast-specific markers, and these findings were validated by RT-PCR. Ex vivo studies in human airway tissue sections identified high-molecular weight caldesmon and alpha-smooth muscle actin as being expressed in smooth muscle bundles, whereas ITGA8 and TBXAS1 were absent from these.

Collaboration


Dive into the Charlotte K. Billington's collaboration.

Top Co-Authors

Avatar

Ian P. Hall

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Raymond B. Penn

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Ian Sayers

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Swan

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily Hodge

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Suzanne Miller

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge