Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte L. Rae is active.

Publication


Featured researches published by Charlotte L. Rae.


NeuroImage | 2012

White matter pathology in Parkinson's disease: The effect of imaging protocol differences and relevance to executive function

Charlotte L. Rae; Marta Correia; Ellemarije Altena; Laura E. Hughes; Roger A. Barker; James B. Rowe

Diffusion magnetic resonance imaging is increasingly used as a non-invasive method to investigate white matter structure in neurological and neuropsychiatric disease. However, many options are available for the acquisition sequence and analysis method. Here we used Parkinsons disease as a model neurodegenerative disorder to compare imaging protocols and analysis options. We investigated fractional anisotropy and mean diffusivity of white matter in patients and age-matched controls, comparing two datasets acquired with different imaging protocols. One protocol prioritised the number of b value acquisitions, whilst the other prioritised the number of gradient directions. The dataset with more gradient directions was more sensitive to reductions in fractional anisotropy in Parkinsons disease, whilst the dataset with more b values was more sensitive to increases in mean diffusivity. Moreover, the areas of reduced fractional anisotropy were highly similar to areas of increased mean diffusivity in PD patients. Next, we compared two widely used analysis methods: tract-based spatial statistics identified reduced fractional anisotropy and increased mean diffusivity in Parkinsons disease in many of the major white matter tracts in the frontal and parietal lobes. Voxel-based analyses were less sensitive, with similar patterns of white matter pathology observed only at liberal statistical thresholds. We also used tract-based spatial statistics to identify correlations between a test of executive function (phonemic fluency), fractional anisotropy and mean diffusivity in prefrontal white matter in both Parkinsons disease patients and controls. These findings suggest that in Parkinsons disease there is widespread pathology of cerebral white matter, and furthermore, pathological white matter in the frontal lobe may be associated with executive dysfunction. Diffusion imaging protocols that prioritised the number of directions versus the number of b values were differentially sensitive to alternative markers of white matter pathology, such as fractional anisotropy and mean diffusivity.


NeuroImage | 2014

Selection and stopping in voluntary action: A meta-analysis and combined fMRI study

Charlotte L. Rae; Laura E. Hughes; Chelan Weaver; Michael C. Anderson; James B. Rowe

Voluntary action control requires selection of appropriate responses and stopping of inappropriate responses. Selection and stopping are often investigated separately, but they appear to recruit similar brain regions, including the pre-supplementary motor area (preSMA) and inferior frontal gyrus. We therefore examined the evidence for overlap of selection and stopping using two approaches: a meta-analysis of existing studies of selection and stopping, and a novel within-subject fMRI study in which action selection and a stop signal task were combined factorially. The novel fMRI study also permitted us to investigate hypotheses regarding a common mechanism for selection and stopping. The preSMA was identified by both methods as common to selection and stopping. However, stopping a selected action did not recruit preSMA more than stopping a specified action, nor did stop signal reaction times differ significantly across the two conditions. These findings suggest that the preSMA supports both action selection and stopping, but the two processes may not require access to a common inhibition mechanism. Instead, the preSMA might represent information about potential actions that is used in both action selection and stopping in order to resolve conflict between competing available responses.


NeuroImage | 2012

Learning to play a melody: an fMRI study examining the formation of auditory-motor associations.

Joyce L. Chen; Charlotte L. Rae; Kate E. Watkins

Interactions between the auditory and motor systems are important for music and speech, and may be especially relevant when one learns to associate sounds with movements such as when learning to play a musical instrument. However, little is known about the neural substrates underlying auditory-motor learning. This study used fMRI to investigate the formation of auditory-motor associations while participants with no musical training learned to play a melody. Listening to melodies before and after training activated the superior temporal gyrus bilaterally, but neural activity in this region was significantly reduced on the right when participants listened to the trained melody. When playing melodies and random sequences, activity in the left dorsal premotor cortex (PMd) was reduced in the late compared to early phase of training; learning to play the melody was also associated with reduced neural activity in the left ventral premotor cortex (PMv). Participants with the highest performance scores for learning the melody showed more reduced neural activity in the left PMd and PMv. Learning to play a melody or random sequence involves acquiring conditional associations between key-presses and their corresponding musical pitches, and is related to activity in the PMd. Learning to play a melody additionally involves acquisition of a learned auditory-motor sequence and is related to activity in the PMv. Together, these findings demonstrate that auditory-motor learning is related to the reduction of neural activity in brain regions of the dorsal auditory action stream, which suggests increased efficiency in neural processing of a learned stimulus.


Brain | 2014

Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease

Zheng Ye; Ellemarije Altena; Cristina Nombela; Charlotte R. Housden; Helen Maxwell; Timothy Rittman; Chelan Huddleston; Charlotte L. Rae; Ralf Regenthal; Barbara J. Sahakian; Roger A. Barker; Trevor W. Robbins; James B. Rowe

Impulsivity is common in Parkinson’s disease. In a double-blind, placebo-controlled study with multi-modal imaging, Ye et al. reveal improved response inhibition in some patients receiving the SSRI citalopram, including those with advanced disease. Improvements correlated with preserved frontostriatal structural connectivity and drug-induced prefrontal activity, highlighting the need for patient stratification in trials.


Biological Psychiatry | 2015

Improving Response Inhibition in Parkinson's Disease with Atomoxetine

Zheng Ye; Ellemarije Altena; Cristina Nombela; Charlotte R. Housden; Helen Maxwell; Timothy Rittman; Chelan Huddleston; Charlotte L. Rae; Ralf Regenthal; Barbara J. Sahakian; Roger A. Barker; Trevor W. Robbins; James B. Rowe

Background Dopaminergic drugs remain the mainstay of Parkinson’s disease therapy but often fail to improve cognitive problems such as impulsivity. This may be due to the loss of other neurotransmitters, including noradrenaline, which is linked to impulsivity and response inhibition. We therefore examined the effect of the selective noradrenaline reuptake inhibitor atomoxetine on response inhibition in a stop-signal paradigm. Methods This pharmacological functional magnetic resonance imaging study used a double-blinded randomized crossover design with low-frequency inhibition trials distributed among frequent Go trials. Twenty-one patients received 40 mg atomoxetine or placebo. Control subjects were tested on no-drug. The effects of disease and drug on behavioral performance, regional brain activity, and functional connectivity were analyzed using general linear models. Anatomical connectivity was examined using diffusion-weighted imaging. Results Patients with Parkinson’s disease had longer stop-signal reaction times, less stop-related activation in the right inferior frontal gyrus (RIFG), and weaker functional connectivity between the RIFG and striatum compared with control subjects. Atomoxetine enhanced stop-related RIFG activation in proportion to disease severity. Although there was no overall behavioral benefit from atomoxetine, analyses of individual differences revealed that enhanced response inhibition by atomoxetine was associated with increased RIFG activation and functional frontostriatal connectivity. Improved performance was more likely in patients with higher structural frontostriatal connectivity. Conclusions This study suggests that enhanced prefrontal cortical activation and frontostriatal connectivity by atomoxetine may improve response inhibition in Parkinson’s disease. These results point the way to new stratified clinical trials of atomoxetine to treat impulsivity in selected patients with Parkinson’s disease.


Brain | 2014

The medial frontal-prefrontal network for altered awareness and control of action in corticobasal syndrome

Noham Wolpe; James W. Moore; Charlotte L. Rae; Timothy Rittman; Ellemarije Altena; Patrick Haggard; James B. Rowe

The volitional impairments of alien limb and apraxia are a defining feature of the corticobasal syndrome, but a limited understanding of their neurocognitive aetiology has hampered progress towards effective treatments. Here we combined several key methods to investigate the mechanism of impairments in voluntary action in corticobasal syndrome. We used a quantitative measure of awareness of action that is based on well-defined processes of motor control; structural and functional anatomical information; and evaluation against the clinical volitional disorders of corticobasal syndrome. In patients and healthy adults we measured ‘intentional binding’, the perceived temporal attraction between voluntary actions and their sensory effects. Patients showed increased binding of the perceived time of actions towards their effects. This increase correlated with the severity of alien limb and apraxia, which we suggest share a core deficit in motor control processes, through reduced precision in voluntary action signals. Structural neuroimaging analyses showed the behavioural variability in patients was related to changes in grey matter volume in pre-supplementary motor area, and changes in its underlying white matter tracts to prefrontal cortex. Moreover, changes in functional connectivity at rest between the pre-supplementary motor area and prefrontal cortex were proportional to changes in binding. These behavioural, structural and functional results converge to reveal the frontal network for altered awareness and control of voluntary action in corticobasal syndrome, and provide candidate markers to evaluate new therapies.


Human Brain Mapping | 2016

Predicting beneficial effects of atomoxetine and citalopram on response inhibition in Parkinson's disease with clinical and neuroimaging measures

Zheng Ye; Charlotte L. Rae; Cristina Nombela; Timothy E. Ham; Timothy Rittman; P.S. Jones; Patricia Vázquez Rodríguez; Ian Coyle-Gilchrist; Ralf Regenthal; Ellemarije Altena; Charlotte R. Housden; Helen Maxwell; Barbara J. Sahakian; Roger A. Barker; Trevor W. Robbins; James B. Rowe

Recent studies indicate that selective noradrenergic (atomoxetine) and serotonergic (citalopram) reuptake inhibitors may improve response inhibition in selected patients with Parkinsons disease, restoring behavioral performance and brain activity. We reassessed the behavioral efficacy of these drugs in a larger cohort and developed predictive models to identify patient responders. We used a double‐blind randomized three‐way crossover design to investigate stopping efficiency in 34 patients with idiopathic Parkinsons disease after 40 mg atomoxetine, 30 mg citalopram, or placebo. Diffusion‐weighted and functional imaging measured microstructural properties and regional brain activations, respectively. We confirmed that Parkinsons disease impairs response inhibition. Overall, drug effects on response inhibition varied substantially across patients at both behavioral and brain activity levels. We therefore built binary classifiers with leave‐one‐out cross‐validation (LOOCV) to predict patients’ responses in terms of improved stopping efficiency. We identified two optimal models: (1) a “clinical” model that predicted the response of an individual patient with 77–79% accuracy for atomoxetine and citalopram, using clinically available information including age, cognitive status, and levodopa equivalent dose, and a simple diffusion‐weighted imaging scan; and (2) a “mechanistic” model that explained the behavioral response with 85% accuracy for each drug, using drug‐induced changes of brain activations in the striatum and presupplementary motor area from functional imaging. These data support growing evidence for the role of noradrenaline and serotonin in inhibitory control. Although noradrenergic and serotonergic drugs have highly variable effects in patients with Parkinsons disease, the individual patients response to each drug can be predicted using a pattern of clinical and neuroimaging features. Hum Brain Mapp 37:1026–1037, 2016.


Brain | 2016

Atomoxetine restores the response inhibition network in Parkinson’s disease

Charlotte L. Rae; Cristina Nombela; Patricia Vázquez Rodríguez; Zheng Ye; Laura E. Hughes; P. Simon Jones; Timothy E. Ham; Timothy Rittman; Ian Coyle-Gilchrist; Ralf Regenthal; Barbara J. Sahakian; Roger A. Barker; Trevor W. Robbins; James B. Rowe

Impairments in response inhibition in Parkinson’s disease may reflect loss of noradrenaline and impaired fronto-subcortical connectivity. Rae et al. show that the noradrenaline reuptake inhibitor atomoxetine can restore functional connectivity in the inhibition network. Individual treatment responses depend on disease severity, plasma drug concentration and anatomical connectivity within the network.


Neuropsychopharmacology | 2016

Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson’s Disease

Robin J Borchert; Timothy Rittman; Luca Passamonti; Zheng Ye; Saber Sami; Simon Jones; Cristina Nombela; Patricia Vázquez Rodríguez; Deniz Vatansever; Charlotte L. Rae; Laura E. Hughes; Trevor W. Robbins; James B. Rowe

Cognitive impairment is common in Parkinson’s disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest (‘task-free’) provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems.


Biological Psychiatry | 2017

Deficits in Neurite Density Underlie White Matter Structure Abnormalities in First-Episode Psychosis

Charlotte L. Rae; Geoff Davies; Sarah N. Garfinkel; Matt Gabel; Nicholas G. Dowell; Mara Cercignani; Anil K. Seth; Kathryn Greenwood; Nick Medford; Hugo D. Critchley

BACKGROUND Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. METHODS Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. RESULTS Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. CONCLUSIONS Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to psychosis.

Collaboration


Dive into the Charlotte L. Rae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zheng Ye

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge