Charlotte Rasmussen
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charlotte Rasmussen.
Journal of Parasitology | 2004
Billie L. Kerans; Charlotte Rasmussen; Richard I. Stevens; A. E L. Colwell; James R. Winton
Whirling disease, caused by the parasite Myxobolus cerebralis, has infected rainbow trout (Oncorhynchus mykiss) and other salmonid fish in the western United States, often with devastating results to native populations but without a discernible spatial pattern. The parasite develops in a complex 2-host system in which the aquatic oligochaete Tubifex tubifex is an obligate host. Because substantial differences in whirling disease severity in different areas of North America did not seem explainable by environmental factors or features of the parasite or its fish host, we sought to determine whether ecological or genetic variation within oligochaete host populations may be responsible. We found large differences in compatibility between the parasite and various laboratory strains of T. tubifex that were established from geographic regions with different whirling disease histories. Moreover, 2 closely related species of tubificids, Limnodrilus hoffmeisteri and Ilyodrilus templetoni, which occur naturally in mixed species assemblages with T. tubifex, were incompatible with M. cerebralis. Virulence of the parasite was directly correlated with the numbers of triactinomyxon spores that developed within each strain of T. tubifex. Thus, the level of virulence was directly related to the compatibility between the host strain and the parasite. Genetic analyses revealed relationships that were in agreement with the level of parasite production. Differences in compatibilities between oligochaetes and M. cerebralis may contribute to the spatial variance in the severity of the disease among salmonid populations.
Journal of Parasitology | 2001
Richard I. Stevens; Billie L. Kerans; J. C. Lemmon; Charlotte Rasmussen
The aquatic oligochaete Tubifex tubifex is an obligate host of Myxobolus cerebralis, the causative agent of salmonid whirling disease. Tubifex tubifex can become infected by ingesting myxospores of M. cerebralis that have been released into sediments upon death and decomposition of infected salmonids. Infected worms release triactinomyxons into the water column that then infect salmonids. How the dose of myxospores ingested by T. tubifex influences parasite proliferation and the worm host are not well understood. Using replicated laboratory experiments, we examined how differing doses of myxospores (50, 500, 1,000 per worm) influenced triactinomyxon production and biomass, abundance, and individual weight of 2 geographically distinct populations of T. tubifex. Worm populations produced differing numbers of triactinomyxons, but, within a population, the production did not differ among myxospore doses. At the lowest myxospore dose, 1 worm population produced 45 times more triactinomyxons than myxospores received, whereas the other produced only 6 times more triactinomyxons than myxospores. Moreover, total T. tubifex biomass, abundance, and individual weight were lower among worms receiving myxospores than in myxospore-free controls. Thus, T. tubifex populations differ in ability to support the replication of M. cerebralis, and infection has measurable consequences on fitness of the worm host. These results suggest that variability in whirling disease severity observed in wild salmonid populations may partially be attributed to differences in T. tubifex populations.
Journal of Aquatic Animal Health | 2006
Todd M. Koel; Daniel L. Mahony; Kendra L. Kinnan; Charlotte Rasmussen; Crystal J. Hudson; Silvia Murcia; Billie L. Kerans
Abstract The exotic parasite Myxobolus cerebralis was first detected in native adult Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii from Yellowstone Lake in 1998, seriously threatening the ecological integrity of this pristine, naturally functioning ecosystem. We immediately began to assess the prevalence and spatial extent of M. cerebralis infection in Yellowstone cutthroat trout within Yellowstone Lake and to determine the infection risk of age-0 Yellowstone cutthroat trout, the relative abundance and actinospore production of tubificid worms, and the basic environmental characteristics of tributaries. During 1999–2001, juvenile and adult Yellowstone cutthroat trout were infected throughout Yellowstone Lake; the highest prevalence (15.3–16.4%) occurred in the northern and central regions. Exposure studies in 13 streams indicated that Pelican and Clear creeks and the Yellowstone River were positive for M. cerebralis; the highest prevalence (100%) and severity was found in Pelican Creek during...
Ecological Applications | 2006
Rebecca C. Krueger; Billie L. Kerans; E. Richard Vincent; Charlotte Rasmussen
Myxobolus cerebralis, the parasite that causes salmonid whirling disease, has had detrimental effects on several salmonid populations in the Intermountain West, including the rainbow trout in the Madison River, Montana, USA. The goal of this study was to examine relationships among characteristics of the environment, Tubifex tubifex (the alternate host) populations, and rainbow trout whirling disease risk in the Madison River. Environmental characteristics were measured in side channels of the Madison River, and differences were described with a principal components analysis. The density of T. tubifex, the prevalence of infection in T. tubifex, and the density of infected T. tubifex were determined for the side channels using benthic core samples and examination of live tubificids for infection. The site-specific contribution to whirling disease risk in the side channels was determined using in situ exposures of sentinel rainbow trout. Regression analyses were used to determine correlations among these characteristics. Side channels differed in site-specific contribution to rainbow trout whirling disease risk, which was positively correlated to the density of infected T. tubifex. Side channels with fine sediments and lower water temperatures made greater site-specific contribution to whirling disease risk and had higher densities of infected T. tubifex than side channels with coarser sediments and higher temperatures. The ability to characterize areas of high whirling disease risk is essential for improving our understanding of the dynamics of M. cerebralis such that appropriate management strategies can be implemented. In addition, this study provides a model of how the disease ecology of complex aquatic parasites can be examined when the influential processes operate on different spatial scales.
Journal of Parasitology | 2008
Charlotte Rasmussen; Julie Zickovich; James R. Winton; Billie L. Kerans
Myxobolus cerebralis, the causative agent of whirling disease, infects both salmonid fish and an aquatic oligochaete, Tubifex tubifex. Although M. cerebralis has been detected in river drainages throughout the United States, disease severity among wild fish populations has been highly variable. Tubifex tubifex populations have been genetically characterized using sequences from the 16S mitochondrial DNA (mtDNA) gene, the 18S ribosomal RNA gene, the internal transcribed spacer region 1 (ITS1), and randomly amplified polymorphic DNA (RAPD). Our earlier work indicated that large differences in compatibility between the parasite and populations of T. tubifex may play a substantial role in the distribution of whirling disease and resulting mortality in different watersheds. In the present study, we examined 4 laboratory populations of T. tubifex belonging to 16S mtDNA lineage III and 1 population belonging to 16S mtDNA lineage I for triactinomyxon (TAM) production after infection with M. cerebralis myxospores. All 4 16S mtDNA lineage III populations produced TAMs, but statistically significant differences in TAM production were observed. Most individuals in the 16S mtDNA lineage III-infected populations produced TAMs. The 16S mtDNA lineage I population produced few TAMs. Further genetic characterization of the 16S mtDNA lineage III populations with RAPD markers indicated that populations producing similar levels of TAMs had more genetic similarity.
Journal of Aquatic Animal Health | 2006
Adam J. Kaeser; Charlotte Rasmussen; William E. Sharpe
Abstract Salmonid whirling disease, caused by the myxosporean parasite Myxobolus cerebralis, was first observed in the United States in 1956 in central Pennsylvania. The parasite was subsequently discovered at several culture facilities throughout the state, and widespread distribution of this parasite via the stocking of subclinically infected brook trout Salvelinus fontinalis, rainbow trout Oncorhynchus mykiss, and brown trout Salmo trutta has been assumed. Although no monitoring of wild populations occurred until the late 1970s, it is a common belief that epizootics of whirling disease, now realized in the Intermountain West, are unlikely to have occurred in Pennsylvania. We conducted a review of historical information and a synoptic survey aimed at identifying factors that may prevent whirling disease outbreak in this region, reasoning that such information might be useful in identifying management strategies for populations affected by this parasite. Here we present data on parasite prevalence, fish ...
Diseases of Aquatic Organisms | 2010
Charlotte Rasmussen; Maureen K. Purcell; J. L. Gregg; Scott E. LaPatra; James R. Winton; Paul Hershberger
The mesomycetozoean parasite Ichthyophonus hoferi is most commonly associated with marine fish hosts but also occurs in some components of the freshwater rainbow trout Oncorhynchus mykiss aquaculture industry in Idaho, USA. It is not certain how the parasite was introduced into rainbow trout culture, but it might have been associated with the historical practice of feeding raw, ground common carp Cyprinus carpio that were caught by commercial fisherman. Here, we report a major genetic division between west coast freshwater and marine isolates of Ichthyophonus hoferi. Sequence differences were not detected in 2 regions of the highly conserved small subunit (18S) rDNA gene; however, nucleotide variation was seen in internal transcribed spacer loci (ITS1 and ITS2), both within and among the isolates. Intra-isolate variation ranged from 2.4 to 7.6 nucleotides over a region consisting of approximately 740 bp. Majority consensus sequences from marine/anadromous hosts differed in only 0 to 3 nucleotides (99.6 to 100% nucleotide identity), while those derived from freshwater rainbow trout had no nucleotide substitutions relative to each other. However, the consensus sequences between isolates from freshwater rainbow trout and those from marine/anadromous hosts differed in 13 to 16 nucleotides (97.8 to 98.2% nucleotide identity).
Journal of Invertebrate Pathology | 2009
Sascha L. Hallett; Harriet V. Lorz; Stephen D. Atkinson; Charlotte Rasmussen; Lan Xue; Jerri L. Bartholomew
Tubifex tubifex are obligate invertebrate hosts in the life cycle of Myxobolus cerebralis, the myxozoan parasite that causes whirling disease in salmonid fishes. This exotic parasite is established to varying degrees across Oregons Columbia River system (Pacific Northwest, USA) and characteristics of local T. tubifex populations likely play a role in the pattern of disease occurrence. To better understand these patterns, we collected T. tubifex from three Oregon river basins (Willamette, Deschutes, and Grande Ronde), determined their genotype (mitochondrial 16S rDNA lineage and RAPD genotype) and exposed 10 different populations to M. cerebralis in the laboratory. Four mt lineages were identified: I, III, V and VI. Lineage III was found in all river basins but dominated both central and eastern sites. The RAPD assay further divided these lineages into geographic sub-populations; no RAPD genotype was common to all basins. There was a significant difference in prevalence of infection and level of parasite production among the populations we exposed to M. cerebralis that was attributed to genotypic composition. Only lineage III worms released actinospores and only populations dominated by this lineage amplified the parasite. These populations had the lowest survival, however, the lineage dominant before exposure remained dominant despite the high prevalence of infection. The distribution and infection dynamics of susceptible T. tubifex throughout Oregon may contribute to the differences in M. cerebralis occurrence; our studies further support the influence of oligochaete genotypes on the manifestation of whirling disease in salmonid populations.
Journal of The North American Benthological Society | 2011
Julie D. Alexander; Billie L. Kerans; Todd M. Koel; Charlotte Rasmussen
Abstract Parasites can regulate host abundance and influence the composition and structure of communities. However, host–parasite interactions might be context-specific if environmental conditions can alter the outcome of parasitism and disease. An understanding of how host–parasite interactions might change in different contexts will be useful for predicting and managing disease against a background of anthropogenic environmental change. We examined the ecology of Myxobolus cerebralis, the parasite that causes whirling disease in salmonids, and its obligate host, Tubifex tubifex, in geothermally variable stream reaches in Yellowstone National Park. We identified reaches in 4 categories of geothermal influence, which were characterized by variable substrates, temperatures, specific conductivities, and pH. In each reach, we measured aspects of host ecology (abundance, relative abundance, size, and genotype of T. tubifex), parasite ecology (infection prevalence in T. tubifex and abundance of M. cerebralis-infected T. tubifex), and risk to fish of contracting whirling disease. Tubifex tubifex abundance was high all in reaches characterized by geothermal influence, whereas abundance of M. cerebralis-infected T. tubifex was high only in reaches characterized by intermediate geothermal influence. We suggest that habitat had a contextual effect on parasitism in the oligochaete host. Abundance of infected hosts appeared to depend on host abundance in all reach types except those with high geothermal influence, where abundance of infected hosts depended on environmental factors.
Diseases of Aquatic Organisms | 2006
Leah C. Steinbach Elwell; Billie L. Kerans; Charlotte Rasmussen; James R. Winton