Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte Scheutz is active.

Publication


Featured researches published by Charlotte Scheutz.


Waste Management & Research | 2009

Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

Charlotte Scheutz; Peter Kjeldsen; Jean E. Bogner; Alex De Visscher; Julia Gebert; Helene Hilger; Marion Huber-Humer; Kurt A. Spokas

Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials utilizing oxygen that diffuses into the cover layer from the atmosphere. The methane oxidation process, which is governed by several environmental factors, can be exploited in engineered systems developed for methane emission mitigation. Mathematical models that account for methane oxidation can be used to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed.


Waste Management | 2010

Greenhouse gas emissions from home composting of organic household waste

Jacob Kragh Andersen; Alessio Boldrin; Thomas Højlund Christensen; Charlotte Scheutz

The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week(-1) and the temperature inside the composting units was in all cases only a few degrees (2-10 °C) higher than the ambient temperature. The emissions of methane (CH(4)) and nitrous oxide (N(2)O) were quantified as 0.4-4.2 kg CH(4)Mg(-1) input wet waste (ww) and 0.30-0.55 kg N(2)OMg(-1)ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH(4) and N(2)O emissions) of 100-239 kg CO(2)-eq.Mg(-1)ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH(4) during mixing which was estimated to 8-12% of the total CH(4) emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg(-1)ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO(2)-eq.Mg(-1)ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.


Waste Management & Research | 2013

Life cycle assessment of sewage sludge management: A review

Hiroko Yoshida; Thomas Højlund Christensen; Charlotte Scheutz

In this article, 35 published studies on life cycle assessment (LCA) of sewage sludge were reviewed for their methodological and technological assumptions. Overall, LCA has been providing a flexible framework to quantify environmental impacts of wastewater and sewage sludge treatment and disposal processes for multiple scales, ranging from process selection to policy evaluation. The results of LCA are, in principle, unique to the goal and scope of each study, reflecting its local conditions and comparison between different LCAs is not intended. Furthermore, the assessments are limited by the methodological development of the life cycle impact assessment (LCIA) and the advancement of research in quantifying environmental emissions associated with wastewater and sewage sludge treatment processes. Thus, large discrepancies were found in the selection of the environmental emissions to be included and how they were estimated in the analysis. In order to reduce these choice uncertainties, consolidation of the modelling approach in the following area are recommended: quantification of fugitive gas emissions and modelling of disposal practices. Besides harmonization of the key technical assumptions, clear documentation of the modelling approach and the uncertainties associating with each assumption is encouraged so as to improve the integrity and robustness of assessment.


Water Research | 2011

Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface – A critical review

Charlotte Scheutz; Neal Durant; Maria Heisterberg Hansen; Poul Løgstrup Bjerg

1,1,1-Trichloroethane (TCA) in groundwater is susceptible to a variety of natural degradation mechanisms. Evidence of intrinsic decay of TCA in aquifers is commonly observed; however, TCA remains a persistent pollutant at many sites and some of the daughter products that accumulate from intrinsic decay of TCA have been determined to be more toxic than the parent compound. Research advances from the past decade indicate that in situ enhanced reductive dechlorination (ERD) offers promise as a cost-effective solution toward the cleanup of groundwater contaminated with TCA and its transformation daughter products. Laboratory studies have demonstrated that pure or mixed cultures containing certain Dehalobacter (Dhb) bacteria can catalyze respiratory dechlorination of TCA and 1,1-dichloroethane (1,1-DCA) to monochloroethane (CA) in groundwater systems. 16S rRNA Dhb gene probes have been used as biomarkers in groundwater samples to both assess ERD potential and quantify growth of Dhb in ERD applications at TCA sites. Laboratory findings suggest that iron-bearing minerals and methanogenic bacteria that co-occur in reduced aquifers may synergistically affect dechlorination of TCA. Despite these advances, a number of significant challenges remain, including an inability of any known cultures to completely dechlorinate TCA to ethane. CA is commonly observed as a terminal product of the biological reductive dechlorination of TCA and 1,1-DCA. Also important is the lack of rigorous field studies demonstrating the utility of bioaugmentation with Dhb cultures for remediation of TCA in the field. In this paper we review the state-of-the-science of TCA degradation in aquifers, examining results from both laboratory experiments and twenty-two field case studies, focusing on the capabilities and limits of ERD technology, and identifying aspects of the technology that warrant further development.


Waste Management | 2011

Quantification of multiple methane emission sources at landfills using a double tracer technique

Charlotte Scheutz; Jerker Samuelsson; Anders Michael Fredenslund; Peter Kjeldsen

A double tracer technique was used successfully to quantify whole-site methane (CH(4)) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH(4) emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH(4) emissions from the old landfill section were quantified to be 32.6 ± 7.4 kg CH(4)h(-1), whereas the source at the new section was quantified to be 10.3 ± 5.3 kg CH(4)h(-1). The CH(4) emission from the compost area was 0.5 ± 0.25 kg CH(4)h(-1), whereas the carbon dioxide (CO(2)) and nitrous oxide (N(2)O) flux was quantified to be in the order of 332 ± 166 kg CO(2)h(-1) and 0.06 ± 0.03 kg N(2)Oh(-1), respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 ± 0.63 kg h(-1) CH(4), and 0.03 ± 0.01 kg h(-1) N(2)O.


Journal of Environmental Quality | 2010

Quantification of Greenhouse Gas Emissions from Windrow Composting of Garden Waste

Jacob Kragh Andersen; Alessio Boldrin; Jerker Samuelsson; Thomas Højlund Christensen; Charlotte Scheutz

Microbial degradation of organic wastes entails the production of various gases such as carbon dioxide (CO(2)), methane (CH(4)), nitrous oxide (N(2)O), and carbon monoxide (CO). Some of these gases are classified as greenhouse gases (GHGs), thus contributing to climate change. A study was performed to evaluate three methods for quantifying GHG emissions from central composting of garden waste. Two small-scale methods were used at a windrow composting facility: a static flux chamber method and a funnel method. Mass balance calculations based on measurements of the C content in the in- and out-going material showed that 91 to 94% of the C could not be accounted for using the small-scale methods, thereby indicating that these methods significantly underestimate GHG emissions. A dynamic plume method (total emission method) employing Fourier Transform Infra Red (FTIR) absorption spectroscopy was found to give a more accurate estimate of the GHG emissions, with CO(2) emissions measured to be 127 +/- 15% of the degraded C. Additionally, with this method, 2.7 +/- 0.6% and 0.34 +/- 0.16% of the degraded C was determined to be emitted as CH(4) and CO. In this study, the dynamic plume method was a more effective tool for accounting for C losses and, therefore, we believe that the method is suitable for measuring GHG emissions from composting facilities. The total emissions were found to be 2.4 +/- 0.5 kg CH(4)-C Mg(-1) wet waste (ww) and 0.06 +/- 0.03 kg N(2)O-N Mg(-1) ww from a facility treating 15,540 Mg of garden waste yr(-1), or 111 +/- 30 kg CO(2)-equivalents Mg(-1) ww.


Waste Management | 2012

Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

Jacob Kragh Andersen; Alessio Boldrin; Thomas Højlund Christensen; Charlotte Scheutz

An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compost was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of -2 to 16 milli person equivalents (mPE) Mg(-1) wet waste (ww) for the non-toxic categories and -0.9 to 28mPEMg(-1) ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.


Waste Management | 2011

Mass balances and life cycle inventory of home composting of organic waste

Jacob Kragh Andersen; Alessio Boldrin; Thomas Højlund Christensen; Charlotte Scheutz

A comprehensive experimental setup with six single-family home composting units was monitored during 1 year. The composting units were fed with 2.6-3.5 kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental relevance were addressed and a full life-cycle inventory (LCI) was established for the six home composting units. No water, electricity or fuel was used during composting, so the major environmental burdens were gaseous emissions to air and emissions via leachate. The loss of carbon (C) during composting was 63-77% in the six composting units. The carbon dioxide (CO(2)) and methane (CH(4)) emissions made up 51-95% and 0.3-3.9% respectively of the lost C. The total loss of nitrogen (N) during composting was 51-68% and the nitrous oxide (N(2)O) made up 2.8-6.3% of this loss. The NH(3) losses were very uncertain but small. The amount of leachate was 130 L Mg(-1) wet waste (ww) and the composition was similar to other leachate compositions from home composting (and centralised composting) reported in literature. The loss of heavy metals via leachate was negligible and the loss of C and N via leachate was very low (0.3-0.6% of the total loss of C and 1.3-3.0% of the total emitted N). Also the compost composition was within the typical ranges reported previously for home composting. The level of heavy metals in the compost produced was below all threshold values and the compost was thus suitable for use in private gardens.


Environmental Science & Technology | 2010

Field evaluation of biological enhanced reductive dechlorination of chloroethenes in clayey till.

Charlotte Scheutz; Mette Martina Broholm; Neal Durant; Eline Begtrup Weeth; Torben H. Jørgensen; Philip Dennis; Carsten S. Jacobsen; Evan Cox; Julie Claire Claudia Chambon; Poul Løgstrup Bjerg

The performance of enhanced reductive dechlorination (ERD) for in situ remediation of cis-1,2-dichloroethene (cDCE) and vinyl chloride in clayey till was investigated in a pilot test. A dilute groundwater solution containing emulsified soybean oil and Dehalococcoides bacteria was injected into a sand-filled hydraulic fracture. Fermentation of the ERD solution caused the establishment of a dechlorinating bioactive zone in the fracture within 1 month of injection. By 148 days, all the cDCE in the fracture was dechlorinated to ethene. Analysis of a clay core from Day 150 indicated that electron donor and fermentation products diffused from the fracture at least 10 cm into clay and that stimulated dechlorination occurred in the clay in the presence of Dehalococcoides (7.9.10(4) cells g(-1)). Comparison of chloroethene profiles in the Day 150 core to modeled diffusion profiles indicated degradation occurred in a bioactive zone extending approximately 5 to 6 cm into the clay matrix. These data suggest that a bioactive zone established in a sand-filled fracture can expand into the adjacent clayey till matrix and facilitate mass transfer from the matrix to the bioactive zone. These findings offer promise for ERD and support further development of methods for deploying ERD in clayey till and other low-permeability deposits.


Waste Management | 2014

Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements – A sensitivity analysis based on multiple field surveys

Jacob Mønster; Jerker Samuelsson; Peter Kjeldsen; Chris W. Rella; Charlotte Scheutz

Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision instrument can measure methane plumes more than 1.2 km away from small sources (about 5 kg h(-1)) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1 kg per hour and can be used to quantify individual sources with the right choice of wind direction and road distance. The placement of the trace gas is important for obtaining correct quantification and uncertainty of up to 36% can be incurred when the trace gas is not co-located with the methane source. Measurements made at greater distances are less sensitive to errors in trace gas placement and model calculations showed an uncertainty of less than 5% in both urban and open-country for placing the trace gas 100 m from the source, when measurements were done more than 3 km away. Using the ratio of the integrated plume concentrations of tracer gas and methane gives the most reliable results for measurements at various distances to the source, compared to the ratio of the highest concentration in the plume, the direct concentration ratio and using a Gaussian plume model. Under suitable weather and road conditions, the CRDS system can quantify the emission from different sources located close to each other using only one kind of trace gas due to the high time resolution, while the FTIR system can measure multiple trace gasses but with a lower time resolution.

Collaboration


Dive into the Charlotte Scheutz's collaboration.

Top Co-Authors

Avatar

Peter Kjeldsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Mønster

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessio Boldrin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Thomas Fruergaard Astrup

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Poul Løgstrup Bjerg

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Antonio Delre

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jacob Møller

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Mette Martina Broholm

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge