Charlotte Stadler
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charlotte Stadler.
Nature Methods | 2013
Charlotte Stadler; Elton Rexhepaj; Vasanth R. Singan; Robert F. Murphy; Rainer Pepperkok; Mathias Uhlén; Jeremy C. Simpson; Emma Lundberg
Imaging techniques such as immunofluorescence (IF) and the expression of fluorescent protein (FP) fusions are widely used to investigate the subcellular distribution of proteins. Here we report a systematic analysis of >500 human proteins comparing the localizations obtained in live versus fixed cells using FPs and IF, respectively. We identify systematic discrepancies between IF and FPs as well as between FP tagging at the N and C termini. The analysis shows that for 80% of the proteins, IF and FPs yield the same subcellular distribution, and the locations of 250 previously unlocalized proteins were determined by the overlap between the two methods. Approximately 60% of proteins localize to multiple organelles for both methods, indicating a complex subcellular protein organization. These results show that both IF and FP tagging are reliable techniques and demonstrate the usefulness of an integrative approach for a complete investigation of the subcellular human proteome.
Journal of Proteomics | 2010
Charlotte Stadler; Marie Skogs; Hjalmar Brismar; Mathias Uhlén; Emma Lundberg
Immunofluorescence microscopy is a valuable tool for analyzing protein expression and localization at a subcellular level thus providing information regarding protein function, interaction partners and its role in cellular processes. When performing sample fixation, parameters such as difference in accessibility of proteins present in various cellular compartments as well as the chemical composition of the protein to be studied, needs to be taken into account. However, in systematic and proteome-wide efforts, a need exists for standard fixation protocol(s) that works well for the majority of all proteins independent of subcellular localization. Here, we report on a study with the goal to find a standardized protocol based on the analysis of 18 human proteins localized in 11 different organelles and subcellular structures. Six fixation protocols were tested based on either dehydration by alcohols (methanol, ethanol or iso-propanol) or cross-linking by paraformaldehyde followed by detergent permeabilization (Triton X-100 or saponin) in three human cell lines. Our results show that cross-linking is essential for proteome-wide localization studies and that cross-linking using paraformaldehyde followed by Triton X-100 permeabilization successfully can be used as a single fixation protocol for systematic studies.
Journal of Proteome Research | 2011
Linn Fagerberg; Charlotte Stadler; Marie Skogs; Martin Hjelmare; Kalle Jonasson; Mikaela Wiking; Annica Åbergh; Mathias Uhlén; Emma Lundberg
The subcellular locations of proteins are closely related to their function and constitute an essential aspect for understanding the complex machinery of living cells. A systematic effort has been initiated to map the protein distribution in three functionally different cell lines with the aim to provide a subcellular localization index for at least one representative protein from all human protein-encoding genes. Here, we present the results of more than 3500 proteins mapped to 16 subcellular compartments. The results indicate a ubiquitous protein expression with a majority of the proteins found in all three cell lines and a large portion localized to two or more compartments. The inter-relationships between the subcellular compartments are visualized in a protein-compartment network based on all detected proteins. Hierarchical clustering was performed to determine how closely related the organelles are in terms of protein constituents and compare the proteins detected in each cell type. Our results show distinct organelle proteomes, well conserved across the cell types, and demonstrate that biochemically similar organelles are grouped together.
Journal of Proteomics | 2012
Charlotte Stadler; Martin Hjelmare; Beate Neumann; Kalle Jonasson; Rainer Pepperkok; Mathias Uhlén; Emma Lundberg
We have developed a platform for validation of antibody binding and protein subcellular localization data obtained from immunofluorescence using siRNA technology combined with automated confocal microscopy and image analysis. By combining the siRNA technology with automated sample preparation, automated imaging and quantitative image analysis, a high-throughput assay has been set-up to enable confirmation of accurate protein binding and localization in a systematic manner. Here, we describe the analysis and validation of the subcellular location of 65 human proteins, targeted by 75 antibodies and silenced by 130 siRNAs. A large fraction of (80%) the subcellular locations, including locations of several previously uncharacterized proteins, could be confirmed by the significant down-regulation of the antibody signal after the siRNA silencing. A quantitative analysis was set-up using automated image analysis to facilitate studies of targets found in more than one compartment. The results obtained using the platform demonstrate that siRNA silencing in combination with quantitative image analysis of antibody signals in different compartments of the cells is an attractive approach for ensuring accurate protein localization as well as antibody binding using immunofluorescence. With a large fraction of the human proteome still unexplored, we suggest this approach to be of great importance under the continued work of mapping the human proteome on a subcellular level.
Protein Science | 2011
Barbara Hjelm; Björn Forsström; Ulrika Igel; Henrik Johannesson; Charlotte Stadler; Emma Lundberg; Fredrik Pontén; Anna Sjöberg; Johan Rockberg; Jochen M. Schwenk; Peter Nilsson; Christine Johansson; Mathias Uhlén
A method is described to generate and validate antibodies based on mapping the linear epitopes of a polyclonal antibody followed by sequential epitope‐specific capture using synthetic peptides. Polyclonal antibodies directed towards four proteins RBM3, SATB2, ANLN, and CNDP1, potentially involved in human cancers, were selected and antibodies to several non‐overlapping epitopes were generated and subsequently validated by Western blot, immunohistochemistry, and immunofluorescence. For all four proteins, a dramatic difference in functionality could be observed for these monospecific antibodies directed to the different epitopes. In each case, at least one antibody was obtained with full functionality across all applications, while other epitope‐specific fractions showed no or little functionality. These results present a path forward to use the mapped binding sites of polyclonal antibodies to generate epitope‐specific antibodies, providing an attractive approach for large‐scale efforts to characterize the human proteome by antibodies.
Journal of Proteome Research | 2013
Frida Danielsson; Mikaela Wiking; Diana Mahdessian; Marie Skogs; Hammou Ait Blal; Martin Hjelmare; Charlotte Stadler; Mathias Uhlén; Emma Lundberg
One of the major challenges of a chromosome-centric proteome project is to explore in a systematic manner the potential proteins identified from the chromosomal genome sequence, but not yet characterized on a protein level. Here, we describe the use of RNA deep sequencing to screen human cell lines for RNA profiles and to use this information to select cell lines suitable for characterization of the corresponding gene product. In this manner, the subcellular localization of proteins can be analyzed systematically using antibody-based confocal microscopy. We demonstrate the usefulness of selecting cell lines with high expression levels of RNA transcripts to increase the likelihood of high quality immunofluorescence staining and subsequent successful subcellular localization of the corresponding protein. The results show a path to combine transcriptomics with affinity proteomics to characterize the proteins in a gene- or chromosome-centric manner.
International Immunopharmacology | 2014
Christina Kalderén; Charlotte Stadler; Margareta Forsgren; Linda Kvastad; Elin Johansson; Mona Sydow-Bäckman; Stefan Svensson Gelius
CCL2 is known for its major role as a chemoattractant of monocytes for immunological surveillance and to site of inflammation. CCL2 acts mainly through the G-protein-coupled receptor CCR2 but has also been described to mediate its effects independently of this receptor in vitro and in vivo. Emerging pieces of evidence indicate that the CCL2/CCR2 axis is involved in fibrotic diseases, such as increased plasma levels of CCL2 and the presence of CCL2-hyperresponsive fibroblasts explanted from patients with systemic sclerosis and idiopathic pulmonary fibrosis. One of the profibrotic key mediators is the myofibroblast characterized by overexpression of α-smooth muscle actin and collagen I. However, the correlation between the CCL2/CCR2 axis and the activation of fibroblasts is not yet fully understood. We have screened human fibroblasts of various origins, human pulmonary fibroblasts (HPF), human fetal lung fibroblasts (HFL-1) and primary preadipocytes (SPF-1) in regard to CCL2 stimulated fibrotic responses. Surprisingly we found that CCL2 mediates anti-fibrotic effects independently of CCR2 in human fibroblasts of different origins.
Journal of Proteome Research | 2017
Marie Skogs; Charlotte Stadler; Rutger Schutten; Martin Hjelmare; Christian Gnann; Lars Björk; Ina Poser; Anthony A. Hyman; Mathias Uhlén; Emma Lundberg
Antibodies are indispensible research tools, yet the scientific community has not adopted standardized procedures to validate their specificity. Here we present a strategy to systematically validate antibodies for immunofluorescence (IF) applications using gene tagging. We have assessed the on- and off-target binding capabilities of 197 antibodies using 108 cell lines expressing EGFP-tagged target proteins at endogenous levels. Furthermore, we assessed batch-to-batch effects for 35 target proteins, showing that both the on- and off-target binding patterns vary significantly between antibody batches and that the proposed strategy serves as a reliable procedure for ensuring reproducibility upon production of new antibody batches. In summary, we present a systematic scheme for antibody validation in IF applications using endogenous expression of tagged proteins. This is an important step toward a reproducible approach for context- and application-specific antibody validation and improved reliability of antibody-based experiments and research data.
PLOS ONE | 2015
Gillian O'Hurley; Christer Busch; Linn Fagerberg; Björn M. Hallström; Charlotte Stadler; Anna Tolf; Emma Lundberg; Jochen M. Schwenk; Karin Jirström; Anders Bjartell; William M. Gallagher; Mathias Uhlén; Fredrik Pontén
To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL.
Science | 2017
Peter Thul; Lovisa Åkesson; Mikaela Wiking; Diana Mahdessian; Aikaterini Geladaki; Hammou Ait Blal; Tove Alm; Anna Asplund; Lars Björk; Lisa M. Breckels; Anna Bäckström; Frida Danielsson; Linn Fagerberg; Jenny Fall; Laurent Gatto; Christian Gnann; Sophia Hober; Martin Hjelmare; Fredric Johansson; Sunjae Lee; Cecilia Lindskog; Jan Mulder; Claire M Mulvey; Peter Nilsson; Per Oksvold; Johan Rockberg; Rutger Schutten; Jochen M. Schwenk; Åsa Sivertsson; Evelina Sjöstedt