Charlotte Summers
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charlotte Summers.
Trends in Immunology | 2010
Charlotte Summers; Sara M. Rankin; Alison M. Condliffe; Nanak R Singh; A. Michael Peters; Edwin R. Chilvers
Neutrophils play a key role in the elimination of pathogens. They are remarkably short-lived with a circulating half life of 6–8 h and hence are produced at a rate of 5 × 1010–10 × 1010 cells/day. Tight regulation of these cells is vital because they have significant histotoxic capacity and are widely implicated in tissue injury. This review outlines our current understanding of how neutrophils are released from the bone marrow; in particular, the role of the CXC chemokine receptor 4/stromal-derived factor 1 axis, the relative size and role of the freely circulating and marginated (i.e. slowly transiting) pools within the vascular compartment, and the events that result in the uptake and removal of circulating neutrophils. We also review current understanding of how systemic stress and inflammation affect this finely balanced system.
Chest | 2008
Andrew S. Cowburn; Alison M. Condliffe; Neda Farahi; Charlotte Summers; Edwin R. Chilvers
Many lung diseases are characterized by neutrophil-dominated inflammation; therefore, an understanding of neutrophil function is of considerable importance to respiratory physicians. This review will focus on recent advances in our understanding of how neutrophils are produced, how these cells leave the circulation, the molecular events regulating neutrophil activation and, ultimately, how these cells die and are removed. The neutrophil is now recognized as a highly versatile and sophisticated cell with significant synthetic capacity and an important role in linking the innate and adaptive arms of the immune response. One of the key challenges in conditions such as COPD, bronchiectasis, cystic fibrosis, and certain forms of asthma is how to manipulate neutrophil function in a way that does not compromise antibacterial and antifungal capacity. The possession by neutrophils of a unique repertoire of surface receptors and signaling proteins may make such targeted therapy possible.
Journal of Immunology | 2011
Naomi N. McGovern; Andrew S. Cowburn; Linsey Porter; Sarah R. Walmsley; Charlotte Summers; Alfred A.R. Thompson; Sadia Anwar; Lisa C. Willcocks; Moira K. B. Whyte; Alison M. Condliffe; Edwin R. Chilvers
Neutrophils play a central role in the innate immune response and a critical role in bacterial killing. Most studies of neutrophil function have been conducted under conditions of ambient oxygen, but inflamed sites where neutrophils operate may be extremely hypoxic. Previous studies indicate that neutrophils sense and respond to hypoxia via the ubiquitous prolyl hydroxylase/hypoxia-inducible factor pathway and that this can signal for enhanced survival. In the current study, human neutrophils were shown to upregulate hypoxia-inducible factor (HIF)-1α–dependent gene expression under hypoxic incubation conditions (3 kPa), with a consequent substantial delay in the onset of apoptosis. Despite this, polarization and chemotactic responsiveness to IL-8 and fMLP were entirely unaffected by hypoxia. Similarly, hypoxia did not diminish the ability of neutrophils to phagocytose serum-opsonized heat-killed streptococci. Of the secretory functions examined, IL-8 generation was preserved and elastase release was enhanced by hypoxia. Hypoxia did, however, cause a major reduction in respiratory burst activity induced both by the soluble agonist fMLP and by ingestion of opsonized zymosan, without affecting expression of the NADPH oxidase subunits. Critically, this reduction in respiratory burst activity under hypoxia was associated with a significant defect in the killing of Staphylococcus aureus. In contrast, killing of Escherichia coli, which is predominantly oxidase independent, was fully preserved under hypoxia. In conclusion, these studies suggest that although the NADPH oxidase-dependent bacterial killing mechanism may be compromised by hypoxia, neutrophils overall appear extremely well adapted to operate successfully under severely hypoxic conditions.
Thorax | 2014
Charlotte Summers; Nanak R Singh; Jessica F. White; Iain Mackenzie; Andrew Johnston; Chandra K. Solanki; Kottekkattu Balan; A. Michael Peters; Edwin R. Chilvers
Rationale Acute respiratory distress syndrome (ARDS) affects over 200 000 people annually in the USA. Despite causing severe, and often refractory, hypoxaemia, the high mortality and long-term morbidity of ARDS results mainly from extra-pulmonary organ failure; however the mechanism for this organ crosstalk has not been determined. Methods Using autologous radiolabelled neutrophils we investigated the pulmonary transit of primed and unprimed neutrophils in humans. Flow cytometry of whole blood samples was used to assess transpulmonary neutrophil priming gradients in patients with ARDS, sepsis and perioperative controls. Main results Unprimed neutrophils passed through the lungs with a transit time of 14.2 s, only 2.3 s slower than erythrocytes, and with <5% first-pass retention. Over 97% of neutrophils primed ex vivo with granulocyte macrophage colony-stimulating factor were retained on first pass, with 48% still remaining in the lungs at 40 min. Neutrophils exposed to platelet-activating factor were initially retained but subsequently released such that only 14% remained in the lungs at 40 min. Significant transpulmonary gradients of neutrophil CD62L cell surface expression were observed in ARDS compared with perioperative controls and patients with sepsis. Conclusions We demonstrated minimal delay and retention of unprimed neutrophils transiting the healthy human pulmonary vasculature, but marked retention of primed neutrophils; these latter cells then ‘deprime’ and are re-released into the systemic circulation. Further, we show that this physiological depriming mechanism may fail in patients with ARDS, resulting in increased numbers of primed neutrophils within the systemic circulation. This identifies a potential mechanism for the remote organ damage observed in patients with ARDS.
Blood | 2012
Neda Farahi; Nanak R Singh; Sarah Heard; Chrystalla Loutsios; Charlotte Summers; Chandra K. Solanki; Kishor Solanki; Kottekkattu Balan; Prina Ruparelia; A. Michael Peters; Alison M. Condliffe; Edwin R. Chilvers
Eosinophils are the major cellular effectors of allergic inflammation and represent an important therapeutic target. Although the genesis and activation of eosinophils have been extensively explored, little is known about their intravascular kinetics or physiological fate. This study was designed to determine the intravascular life span of eosinophils, their partitioning between circulating and marginated pools, and sites of disposal in healthy persons. Using autologous, minimally manipulated 111-Indium-labeled leukocytes with blood sampling, we measured the eosinophil intravascular residence time as 25.2 hours (compared with 10.3 hours for neutrophils) and demonstrated a substantial marginated eosinophil pool. γ camera imaging studies using purified eosinophils demonstrated initial retention in the lungs, with early redistribution to the liver and spleen, and evidence of recirculation from a hepatic pool. This work provides the first in vivo measurements of eosinophil kinetics in healthy volunteers and shows that 111-Indium-labeled eosinophils can be used to monitor the fate of eosinophils noninvasively.
Journal of Molecular Biology | 2009
Bibekbrata Gooptu; Elena Miranda; Irene Nobeli; Meera Mallya; Andrew G. Purkiss; Sarah C. Leigh Brown; Charlotte Summers; Russell L. Phillips; David A. Lomas; Tracey E. Barrett
The common Z mutant (Glu342Lys) of α1-antitrypsin results in the formation of polymers that are retained within hepatocytes. This causes liver disease whilst the plasma deficiency of an important proteinase inhibitor predisposes to emphysema. The Thr114Phe and Gly117Phe mutations border a surface cavity identified as a target for rational drug design. These mutations preserve inhibitory activity but reduce the polymerisation of wild-type native α1-antitrypsin in vitro and increase secretion in a Xenopus oocyte model of disease. To understand these effects, we have crystallised both mutants and solved their structures. The 2.2 Å structure of Thr114Phe α1-antitrypsin demonstrates that the effects of the mutation are mediated entirely by well-defined partial cavity blockade and allows in silico screening of fragments capable of mimicking the effects of the mutation. The Gly117Phe mutation operates differently, repacking aromatic side chains in the helix F–β-sheet A interface to induce a half-turn downward shift of the adjacent F helix. We have further characterised the effects of these two mutations in combination with the Z mutation in a eukaryotic cell model of disease. Both mutations increase the secretion of Z α1-antitrypsin in the native conformation, but the double mutants remain more polymerogenic than the wild-type (M) protein. Taken together, these data support different mechanisms by which the Thr114Phe and Gly117Phe mutations stabilise the native fold of α1-antitrypsin and increase secretion of monomeric protein in cell models of disease.
Thorax | 2016
Fraser R Millar; Charlotte Summers; Mark Griffiths; Mark Toshner; Alastair Proudfoot
The pulmonary endothelium is a dynamic, metabolically active layer of squamous endothelial cells ideally placed to mediate key processes involved in lung homoeostasis. Many of these are disrupted in acute respiratory distress syndrome (ARDS), a syndrome with appreciable mortality and no effective pharmacotherapy. In this review, we consider the role of the pulmonary endothelium as a key modulator and orchestrator of ARDS, highlighting advances in our understanding of endothelial pathobiology and their implications for the development of endothelial-targeted therapeutics including cell-based therapies. We also discuss mechanisms to facilitate the translation of preclinical data into effective therapies including the application of biomarkers to phenotype patients with ARDS with a predominance of endothelial injury and emerging biotechnologies that could enhance delivery, discovery and testing of lung endothelial-specific therapeutics.
American Journal of Respiratory Cell and Molecular Biology | 2011
Andrew S. Cowburn; Charlotte Summers; Benjamin J. Dunmore; Neda Farahi; Richard P. Hayhoe; Cristin G. Print; Simon J. Cook; Edwin R. Chilvers
Neutrophil apoptosis is essential for the resolution of inflammation but is delayed by several inflammatory mediators. In such terminally differentiated cells it has been uncertain whether these agents can inhibit apoptosis through transcriptional regulation of anti-death (Bcl-X(L), Mcl-1, Bcl2A1) or BH3-only (Bim, Bid, Puma) Bcl2-family proteins. We report that granulocyte/macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α prevent the normal time-dependent loss of Mcl-1 and Bcl2A1 in neutrophils, and we demonstrate that they cause an NF-κB-dependent increase in Bcl-X(L) transcription/translation. We show that GM-CSF and TNF-α increase and/or maintain mRNA levels for the pro-apoptotic BH3-only protein Bid and that GM-CSF has a similar NF-κB-dependent effect on Bim transcription and BimEL expression. The in-vivo relevance of these findings was indicated by demonstrating that GM-CSF is the dominant neutrophil survival factor in lung lavage from patients with ventilator-associated pneumonia, confirming an increase in lung neutrophil Bim mRNA. Finally GM-CSF caused mitochondrial location of Bim and a switch in phenotype to a cell that displays accelerated caspase-9-dependent apoptosis. This study demonstrates the capacity of neutrophil survival agents to induce a paradoxical increase in the pro-apoptotic proteins Bid and Bim and suggests that this may function to facilitate rapid apoptosis at the termination of the inflammatory cycle.
BMJ | 2008
Hannah J. Durrington; Charlotte Summers
In 1901 William Osler described pneumonia as the “captain of the men of death.”1 Mortality has altered little since penicillin became routinely available, and community acquired pneumonia remains a leading cause of mortality worldwide.2 Here, we review studies published in the past two years and focus on changes in the aetiology, stratification of severity, and antimicrobial management of community acquired pneumonia in adults. #### Sources and selection criteria We searched Medline with the phrase “((community acquired pneumonia [title]) not (infant* or neonat* or child*))” and restricted the search to articles published in English in the previous two years. We identified 149 articles, the titles of which we reviewed to identify major themes. Where necessary we made additional searches based on the themes highlighted by the initial search. We then used this information to prepare a brief review of the sections with which we were most familiar. The British Thoracic Society (BTS) defines community acquired pneumonia as the presence of symptoms and signs consistent with acute lower respiratory tract infection, in association with new radiographic shadowing (figure⇓) for which there is no alternative explanation, which is managed as pneumonia and is the main reason for seeking healthcare advice.3 This definition may not be useful, however, when radiology is not easily accessible. A review of studies that used clinical definitions based on symptoms and signs found these alternative definitions to be inferior to radiography in detecting pneumonia.3 Posterior-anterior (top) and lateral (bottom) chest radiographs showing right upper lobe consolidation in a patient with community acquired pneumonia The annual incidence of community acquired pneumonia in the United Kingdom is 5-11 cases per 1000 adult population.4 Incidence data cannot be extrapolated to other populations because health care varies greatly worldwide. The incidence of the disease varies with age, being higher in very young …
Thorax | 2016
K Hoenderdos; Km Lodge; Robert A. Hirst; Cheng Chen; Stefano G C Palazzo; Annette Emerenciana; Charlotte Summers; Adri Angyal; Linsey Porter; Jatinder K. Juss; Christopher O'Callaghan; Edwin R. Chilvers; Alison M. Condliffe
Background The inflamed bronchial mucosal surface is a profoundly hypoxic environment. Neutrophilic airway inflammation and neutrophil-derived proteases have been linked to disease progression in conditions such as COPD and cystic fibrosis, but the effects of hypoxia on potentially harmful neutrophil functional responses such as degranulation are unknown. Methods and results Following exposure to hypoxia (0.8% oxygen, 3 kPa for 4 h), neutrophils stimulated with inflammatory agonists (granulocyte-macrophage colony stimulating factor or platelet-activating factor and formylated peptide) displayed a markedly augmented (twofold to sixfold) release of azurophilic (neutrophil elastase, myeloperoxidase), specific (lactoferrin) and gelatinase (matrix metalloproteinase-9) granule contents. Neutrophil supernatants derived under hypoxic but not normoxic conditions induced extensive airway epithelial cell detachment and death, which was prevented by coincubation with the antiprotease α-1 antitrypsin; both normoxic and hypoxic supernatants impaired ciliary function. Surprisingly, the hypoxic upregulation of neutrophil degranulation was not dependent on hypoxia-inducible factor (HIF), nor was it fully reversed by inhibition of phospholipase C signalling. Hypoxia augmented the resting and cytokine-stimulated phosphorylation of AKT, and inhibition of phosphoinositide 3-kinase (PI3K)γ (but not other PI3K isoforms) prevented the hypoxic upregulation of neutrophil elastase release. Conclusion Hypoxia augments neutrophil degranulation and confers enhanced potential for damage to respiratory airway epithelial cells in a HIF-independent but PI3Kγ-dependent fashion.