Charu Deshpande
Guy's and St Thomas' NHS Foundation Trust
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charu Deshpande.
American Journal of Human Genetics | 2012
Yvonne Nitschke; G. Baujat; Ulrike Botschen; Tanja Wittkampf; Marcel du Moulin; Jacqueline Stella; Martine Le Merrer; Geneviève Guest; K Lambot; Marie-Frederique Tazarourte-Pinturier; Nicolas Chassaing; O. Roche; Ilse Feenstra; Karen J. Loechner; Charu Deshpande; Samuel J. Garber; Rashmi Chikarmane; Beat Steinmann; Tatevik Shahinyan; Loreto Martorell; Justin H. Davies; Wendy Smith; Stephen G. Kahler; Mignon McCulloch; Elizabeth Wraige; Lourdes Loidi; Wolfgang Höhne; Ludovic Martin; Smail Hadj-Rabia; Robert Terkeltaub
Spontaneous pathologic arterial calcifications in childhood can occur in generalized arterial calcification of infancy (GACI) or in pseudoxanthoma elasticum (PXE). GACI is associated with biallelic mutations in ENPP1 in the majority of cases, whereas mutations in ABCC6 are known to cause PXE. However, the genetic basis in subsets of both disease phenotypes remains elusive. We hypothesized that GACI and PXE are in a closely related spectrum of disease. We used a standardized questionnaire to retrospectively evaluate the phenotype of 92 probands with a clinical history of GACI. We obtained the ENPP1 genotype by conventional sequencing. In those patients with less than two disease-causing ENPP1 mutations, we sequenced ABCC6. We observed that three GACI patients who carried biallelic ENPP1 mutations developed typical signs of PXE between 5 and 8 years of age; these signs included angioid streaks and pseudoxanthomatous skin lesions. In 28 patients, no disease-causing ENPP1 mutation was found. In 14 of these patients, we detected pathogenic ABCC6 mutations (biallelic mutations in eight patients, monoallelic mutations in six patients). Thus, ABCC6 mutations account for a significant subset of GACI patients, and ENPP1 mutations can also be associated with PXE lesions in school-aged children. Based on the considerable overlap of genotype and phenotype of GACI and PXE, both entities appear to reflect two ends of a clinical spectrum of ectopic calcification and other organ pathologies, rather than two distinct disorders. ABCC6 and ENPP1 mutations might lead to alterations of the same physiological pathways in tissues beyond the artery.
American Journal of Human Genetics | 2012
Wendy D Jones; Dimitra Dafou; Meriel McEntagart; Wesley J. Woollard; Frances Elmslie; Muriel Holder-Espinasse; Melita Irving; Anand Saggar; Sarah F. Smithson; Richard C. Trembath; Charu Deshpande; Michael A. Simpson
Excessive growth of terminal hair around the elbows (hypertrichosis cubiti) has been reported both in isolation and in association with a variable spectrum of associated phenotypic features. We identified a cohort of six individuals with hypertrichosis cubiti associated with short stature, intellectual disability, and a distinctive facial appearance, consistent with a diagnosis of Wiedemann-Steiner syndrome (WSS). Utilizing a whole-exome sequencing approach, we identified de novo mutations in MLL in five of the six individuals. MLL encodes a histone methyltransferase that regulates chromatin-mediated transcription through the catalysis of methylation of histone H3K4. Each of the five mutations is predicted to result in premature termination of the protein product. Furthermore, we demonstrate that transcripts arising from the mutant alleles are subject to nonsense-mediated decay. These findings define the genetic basis of WSS, provide additional evidence for the role of haploinsufficency of histone-modification enzymes in multiple-congenital-anomaly syndromes, and further illustrate the importance of the regulation of histone modification in development.
Journal of Medical Genetics | 2014
Morad Ansari; G Poke; Quentin Rv Ferry; Kathleen A. Williamson; R. B. Aldridge; Alison Meynert; Hemant Bengani; C Y Chan; Hülya Kayserili; Ş Avci; Hennekam Rcm.; Anne K. Lampe; Egbert J. W. Redeker; Tessa Homfray; Allyson Ross; M F Smeland; Sahar Mansour; Michael J. Parker; Jackie Cook; Miranda Splitt; Robert B. Fisher; Alan Fryer; Alex Magee; Andrew O.M. Wilkie; A. Barnicoat; Angela F. Brady; Nicola S. Cooper; Catherine Mercer; Charu Deshpande; Christopher Bennett
Background Cornelia de Lange syndrome (CdLS) is a multisystem disorder with distinctive facial appearance, intellectual disability and growth failure as prominent features. Most individuals with typical CdLS have de novo heterozygous loss-of-function mutations in NIPBL with mosaic individuals representing a significant proportion. Mutations in other cohesin components, SMC1A, SMC3, HDAC8 and RAD21 cause less typical CdLS. Methods We screened 163 affected individuals for coding region mutations in the known genes, 90 for genomic rearrangements, 19 for deep intronic variants in NIPBL and 5 had whole-exome sequencing. Results Pathogenic mutations [including mosaic changes] were identified in: NIPBL 46 [3] (28.2%); SMC1A 5 [1] (3.1%); SMC3 5 [1] (3.1%); HDAC8 6 [0] (3.6%) and RAD21 1 [0] (0.6%). One individual had a de novo 1.3 Mb deletion of 1p36.3. Another had a 520 kb duplication of 12q13.13 encompassing ESPL1, encoding separase, an enzyme that cleaves the cohesin ring. Three de novo mutations were identified in ANKRD11 demonstrating a phenotypic overlap with KBG syndrome. To estimate the number of undetected mosaic cases we used recursive partitioning to identify discriminating features in the NIPBL-positive subgroup. Filtering of the mutation-negative group on these features classified at least 18% as ‘NIPBL-like’. A computer composition of the average face of this NIPBL-like subgroup was also more typical in appearance than that of all others in the mutation-negative group supporting the existence of undetected mosaic cases. Conclusions Future diagnostic testing in ‘mutation-negative’ CdLS thus merits deeper sequencing of multiple DNA samples derived from different tissues.
American Journal of Human Genetics | 2012
Michael A. Simpson; Charu Deshpande; Dimitra Dafou; Lisenka E.L.M. Vissers; Wesley J. Woollard; Susan Holder; Gabriele Gillessen-Kaesbach; Ronny Derks; Susan M. White; Ruthy Cohen-Snuijf; Sarina G. Kant; Lies H. Hoefsloot; Willie Reardon; Han G. Brunner; Ernie M.H.F. Bongers; Richard C. Trembath
Genitopatellar syndrome (GPS) is a rare disorder in which patellar aplasia or hypoplasia is associated with external genital anomalies and severe intellectual disability. Using an exome-sequencing approach, we identified de novo mutations of KAT6B in five individuals with GPS; a single nonsense variant and three frameshift indels, including a 4 bp deletion observed in two cases. All identified mutations are located within the terminal exon of the gene and are predicted to generate a truncated protein product lacking evolutionarily conserved domains. KAT6B encodes a member of the MYST family of histone acetyltranferases. We demonstrate a reduced level of both histone H3 and H4 acetylation in patient-derived cells suggesting that dysregulation of histone acetylation is a direct functional consequence of GPS alleles. These findings define the genetic basis of GPS and illustrate the complex role of the regulation of histone acetylation during development.
Nature Genetics | 2015
Nadia A. Akawi; Jeremy McRae; Morad Ansari; Meena Balasubramanian; Moira Blyth; Angela F. Brady; Stephen Clayton; Trevor Cole; Charu Deshpande; Tomas Fitzgerald; Nicola Foulds; Richard Francis; George C. Gabriel; Sebastian S. Gerety; Judith A. Goodship; Emma Hobson; Wendy D Jones; Shelagh Joss; Daniel A. King; Nikolai T. Klena; Ajith Kumar; Melissa Lees; Chris Lelliott; Jenny Lord; Dominic McMullan; Mary O'Regan; Deborah Osio; Virginia Piombo; Elena Prigmore; Diana Rajan
Discovery of most autosomal recessive disease-associated genes has involved analysis of large, often consanguineous multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of new dominant causes of rare, genetically heterogeneous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios. Here we analyzed 4,125 families with diverse, rare and genetically heterogeneous developmental disorders and identified four new autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (selecting probands with rare, biallelic and putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population and (ii) the phenotypic similarity of patients with recessive variants in the same candidate gene. This new paradigm promises to catalyze the discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations and those caused predominantly by compound heterozygous genotypes.
American Journal of Human Genetics | 2015
Jennie E. Murray; Mirjam van der Burg; Hanna IJspeert; Paula Carroll; Qian Wu; Takashi Ochi; Andrea Leitch; Edward S. Miller; Boris Kysela; Alireza Jawad; Armand Bottani; Francesco Brancati; Marco Cappa; Valérie Cormier-Daire; Charu Deshpande; Eissa Faqeih; Gail E. Graham; Emmanuelle Ranza; Tom L. Blundell; Andrew P. Jackson; Grant S. Stewart; Louise S. Bicknell
Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation.
American Journal of Human Genetics | 2016
Kyle Thompson; Homa Majd; Christina Dallabona; Karit Reinson; Martin S. King; Charlotte L. Alston; Langping He; Tiziana Lodi; Simon A. Jones; Aviva Fattal-Valevski; Nitay D. Fraenkel; Ann Saada; Alon Haham; Pirjo Isohanni; Roshni Vara; Ines A. Barbosa; Michael A. Simpson; Charu Deshpande; Sanna Puusepp; Penelope E. Bonnen; Richard J. Rodenburg; Anu Suomalainen; Katrin Õunap; Orly Elpeleg; Ileana Ferrero; Robert McFarland; Edmund R. S. Kunji; Robert W. Taylor
Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.
Investigative Ophthalmology & Visual Science | 2012
Aman Chandra; Jose Antonio Aragon-Martin; Kathryn Hughes; Sabiha Gati; M. Ashwin Reddy; Charu Deshpande; Graham Cormack; Anne H. Child; David G. Charteris; Gavin Arno
PURPOSE To describe the genotype-phenotype relationship of a cohort of consecutive patients with isolated ectopia lentis (EL) secondary to ADAMTSL4 and FBN1 mutations. METHODS Patients underwent detailed ocular, cardiovascular, and skeletal examination. This was correlated with Sanger sequencing of ADAMTSL4 and FBN1 genes. RESULTS Seventeen patients were examined, including one with ectopia lentis et pupillae. Echocardiography and skeletal examination revealed no sign of systemic disorders associated with EL, in particular Marfan syndrome (MFS). Nine patients (52.9%) were found to have mutations in ADAMTSL4, including four novel nonsense mutations. Four patients (25%) were found to have novel FBN1 mutations, not previously reported as causing classical Marfan syndrome. One additional patient was found to have an FBN1 mutation previously reported in classical MFS. Four patients (25%) were found to have no mutations in either gene. Median age of diagnosis of EL was 35 years in patients with FBN1 mutations and 2 years in patients with ADAMTSL4 mutations (P < 0.01). Mean axial length was 22.74 mm (95% confidence interval [CI]: 21.3-24.2) (FBN1) and 27.54 mm (95% CI: 24.2-30.9) (ADAMTSL4) (P < 0.01). Other ophthalmic features, including corneal thickness and power, foveal thickness, visual acuity, and direction of lens displacement, were similar for both groups. CONCLUSIONS ADAMTSL4 is the most important known causative gene in isolated EL. Mutations in ADAMTSL4 appear to cause earlier manifestation of EL and are associated with increased axial length as compared to FBN1. We suggest that ADAMTSL4 be screened in all patients with isolated EL and that physicians be vigilant for the more severe ocular phenotype associated with mutations in this gene.
PLOS ONE | 2011
Thierry Vilboux; Carla Ciccone; Jan Blancato; Gerald F. Cox; Charu Deshpande; Wendy J. Introne; William A. Gahl; Ann C.M. Smith; Marjan Huizing
Smith-Magenis syndrome (SMS) is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ∼3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1) is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion), were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS.
Brain | 2015
Monika Oláhová; Steven A. Hardy; Julie Hall; John W. Yarham; Tobias B. Haack; William C. Wilson; Charlotte L. Alston; Langping He; Erik Aznauryan; Ruth M. Brown; Garry K. Brown; A. A. M. Morris; Helen Mundy; Alex Broomfield; Ines A. Barbosa; Michael A. Simpson; Charu Deshpande; Dorothea Moeslinger; Johannes Koch; Georg M. Stettner; Penelope E. Bonnen; Holger Prokisch; Robert N. Lightowlers; Robert McFarland; Zofia M.A. Chrzanowska-Lightowlers; Robert W. Taylor
The French-Canadian variant of COX-deficient Leigh syndrome (LSFC) is unique to Québec and caused by a founder mutation in the LRPPRC gene. Using whole exome sequencing, Oláhová et al. identify mutations in this gene associated with multisystem mitochondrial disease and early-onset neurodevelopmental problems in ten patients from different ethnic backgrounds.