Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chase D. Mendenhall is active.

Publication


Featured researches published by Chase D. Mendenhall.


Nature | 2014

Predicting biodiversity change and averting collapse in agricultural landscapes

Chase D. Mendenhall; Daniel S. Karp; Christoph F. J. Meyer; Elizabeth A. Hadly; Gretchen C. Daily

The equilibrium theory of island biogeography is the basis for estimating extinction rates and a pillar of conservation science. The default strategy for conserving biodiversity is the designation of nature reserves, treated as islands in an inhospitable sea of human activity. Despite the profound influence of islands on conservation theory and practice, their mainland analogues, forest fragments in human-dominated landscapes, consistently defy expected biodiversity patterns based on island biogeography theory. Countryside biogeography is an alternative framework, which recognizes that the fate of the world’s wildlife will be decided largely by the hospitality of agricultural or countryside ecosystems. Here we directly test these biogeographic theories by comparing a Neotropical countryside ecosystem with a nearby island ecosystem, and show that each supports similar bat biodiversity in fundamentally different ways. The island ecosystem conforms to island biogeographic predictions of bat species loss, in which the water matrix is not habitat. In contrast, the countryside ecosystem has high species richness and evenness across forest reserves and smaller forest fragments. Relative to forest reserves and fragments, deforested countryside habitat supports a less species-rich, yet equally even, bat assemblage. Moreover, the bat assemblage associated with deforested habitat is compositionally novel because of predictable changes in abundances by many species using human-made habitat. Finally, we perform a global meta-analysis of bat biogeographic studies, spanning more than 700 species. It generalizes our findings, showing that separate biogeographic theories for countryside and island ecosystems are necessary. A theory of countryside biogeography is essential to conservation strategy in the agricultural ecosystems that comprise roughly half of the global land surface and are likely to increase even further.


Ecology Letters | 2013

Forest bolsters bird abundance, pest control and coffee yield

Daniel S. Karp; Chase D. Mendenhall; Randi F. Sandi; Nicolas Chaumont; Paul R. Ehrlich; Elizabeth A. Hadly; Gretchen C. Daily

Efforts to maximise crop yields are fuelling agricultural intensification, exacerbating the biodiversity crisis. Low-intensity agricultural practices, however, may not sacrifice yields if they support biodiversity-driven ecosystem services. We quantified the value native predators provide to farmers by consuming coffees most damaging insect pest, the coffee berry borer beetle (Hypothenemus hampei). Our experiments in Costa Rica showed birds reduced infestation by ~ 50%, bats played a marginal role, and farmland forest cover increased pest removal. We identified borer-consuming bird species by assaying faeces for borer DNA and found higher borer-predator abundances on more forested plantations. Our coarse estimate is that forest patches doubled pest control over 230 km2 by providing habitat for ~ 55 000 borer-consuming birds. These pest-control services prevented US


Science | 2014

Loss of avian phylogenetic diversity in neotropical agricultural systems

Luke O. Frishkoff; Daniel S. Karp; Leithen K. M'Gonigle; Chase D. Mendenhall; Jim Zook; Claire Kremen; Elizabeth A. Hadly; Gretchen C. Daily

75-US


Proceedings of the National Academy of Sciences of the United States of America | 2011

Predictive model for sustaining biodiversity in tropical countryside

Chase D. Mendenhall; Cagan H. Sekercioglu; Federico Oviedo Brenes; Paul R. Ehrlich; Gretchen C. Daily

310 ha-year(-1) in damage, a benefit per plantation on par with the average annual income of a Costa Rican citizen. Retaining forest and accounting for pest control demonstrates a win-win for biodiversity and coffee farmers.


Science | 2017

Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems

Anthony D. Barnosky; Elizabeth A. Hadly; Patrick Gonzalez; Jason J. Head; P. David Polly; A. Michelle Lawing; Jussi T. Eronen; David D. Ackerly; Ken Alex; Eric Biber; Jessica L. Blois; Justin S. Brashares; Gerardo Ceballos; Edward Byrd Davis; Gregory P. Dietl; Rodolfo Dirzo; Holly Doremus; Mikael Fortelius; Harry W. Greene; Jessica J. Hellmann; Thomas Hickler; Stephen T. Jackson; Melissa E. Kemp; Paul L. Koch; Claire Kremen; Emily L. Lindsey; Cindy V. Looy; Charles R. Marshall; Chase D. Mendenhall; Andreas Mulch

Costa Rican birds of a feather lost together Evolutionary history is lost when land is converted for farming, and recently evolved species may cope better with changing land use. Frishkoff et al. compared bird diversity over 12 years in three different kinds of landscape in tropical Central America. They mapped their data onto the bird evolutionary tree and found that more evolutionary branches were lost in intensive agricultural landscapes than in mixed landscapes. In turn, mixed landscapes lost more evolutionary branches than forest reserves. This is not just because of species loss; in fact, mixed agricultural landscapes contained similar numbers of species to those in forest reserves. Evolutionary history is lost because the more evolutionarily distinct species—those with fewer extant relatives and a longer evolutionary history—are more likely to become extinct in agricultural land. Science, this issue p. 1343 Longer branches of the avian phylogenetic tree are disproportionately lost in agricultural landscapes in Costa Rica. Habitat conversion is the primary driver of biodiversity loss, yet little is known about how it is restructuring the tree of life by favoring some lineages over others. We combined a complete avian phylogeny with 12 years of Costa Rican bird surveys (118,127 detections across 487 species) sampled in three land uses: forest reserves, diversified agricultural systems, and intensive monocultures. Diversified agricultural systems supported 600 million more years of evolutionary history than intensive monocultures but 300 million fewer years than forests. Compared with species with many extant relatives, evolutionarily distinct species were extirpated at higher rates in both diversified and intensive agricultural systems. Forests are therefore essential for maintaining diversity across the tree of life, but diversified agricultural systems may help buffer against extreme loss of phylogenetic diversity.


PLOS ONE | 2014

Landscape context mediates avian habitat choice in tropical forest restoration.

J. Leighton Reid; Chase D. Mendenhall; J. Abel Rosales; Rakan A. Zahawi; Karen D. Holl

Growing demand for food, fuel, and fiber is driving the intensification and expansion of agricultural land through a corresponding displacement of native woodland, savanna, and shrubland. In the wake of this displacement, it is clear that farmland can support biodiversity through preservation of important ecosystem elements at a fine scale. However, how much biodiversity can be sustained and with what tradeoffs for production are open questions. Using a well-studied tropical ecosystem in Costa Rica, we develop an empirically based model for quantifying the “wildlife-friendliness” of farmland for native birds. Some 80% of the 166 mist-netted species depend on fine-scale countryside forest elements (≤60-m-wide clusters of trees, typically of variable length and width) that weave through farmland along hilltops, valleys, rivers, roads, and property borders. Our model predicts with ∼75% accuracy the bird community composition of any part of the landscape. We find conservation value in small (≤20 m wide) clusters of trees and somewhat larger (≤60 m wide) forest remnants to provide substantial support for biodiversity beyond the borders of tropical forest reserves. Within the study area, forest elements on farms nearly double the effective size of the local forest reserve, providing seminatural habitats for bird species typically associated with the forest. Our findings provide a basis for estimating and sustaining biodiversity in farming systems through managing fine-scale ecosystem elements and, more broadly, informing ecosystem service analyses, biodiversity action plans, and regional land use strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Quantifying and sustaining biodiversity in tropical agricultural landscapes

Chase D. Mendenhall; Analisa Shields-Estrada; Arjun J. Krishnaswami; Gretchen C. Daily

Looking back to move forward The current impacts of humanity on nature are rapid and destructive, but species turnover and change have occurred throughout the history of life. Although there is much debate about the best approaches to take in conservation, ultimately, we need to permit or enhance the resilience of natural systems so that they can continue to adapt and function into the future. In a Review, Barnosky et al. argue that the best way to do this is to look back at paleontological history as a way to understand how ecological resilience is maintained, even in the face of change. Science, this issue p. eaah4787 BACKGROUND The pace and magnitude of human-caused global change has accelerated dramatically over the past 50 years, overwhelming the capacity of many ecosystems and species to maintain themselves as they have under the more stable conditions that prevailed for at least 11,000 years. The next few decades threaten even more rapid transformations because by 2050, the human population is projected to grow by 3 billion while simultaneously increasing per capita consumption. Thus, to avoid losing many species and the crucial aspects of ecosystems that we need—for both our physical and emotional well-being—new conservation paradigms and integration of information from conservation biology, paleobiology, and the Earth sciences are required. ADVANCES Rather than attempting to hold ecosystems to an idealized conception of the past, as has been the prevailing conservation paradigm until recently, maintaining vibrant ecosystems for the future now requires new approaches that use both historical and novel conservation landscapes, enhance adaptive capacity for ecosystems and organisms, facilitate connectedness, and manage ecosystems for functional integrity rather than focusing entirely on particular species. Scientific breakthroughs needed to underpin such a paradigm shift are emerging at the intersection of ecology and paleobiology, revealing (i) which species and ecosystems will need human intervention to persist; (ii) how to foster population connectivity that anticipates rapidly changing climate and land use; (iii) functional attributes that characterize ecosystems through thousands to millions of years, irrespective of the species that are involved; and (iv) the range of compositional and functional variation that ecosystems have exhibited over their long histories. Such information is necessary for recognizing which current changes foretell transitions to less robust ecological states and which changes may signal benign ecosystem shifts that will cause no substantial loss of ecosystem function or services. Conservation success will also increasingly hinge on choosing among different, sometimes mutually exclusive approaches to best achieve three conceptually distinct goals: maximizing biodiversity, maximizing ecosystem services, and preserving wilderness. These goals vary in applicability depending on whether historical or novel ecosystems are the conservation target. Tradeoffs already occur—for example, managing to maximize certain ecosystem services upon which people depend (such as food production on farm or rangelands) versus maintaining healthy populations of vulnerable species (such as wolves, lions, or elephants). In the future, the choices will be starker, likely involving decisions such as which species are candidates for managed relocation and to which areas, and whether certain areas should be off limits for intensive management, even if it means losing some species that now live there. Developing the capacity to make those choices will require conservation in both historical and novel ecosystems and effective collaboration of scientists, governmental officials, nongovernmental organizations, the legal community, and other stakeholders. OUTLOOK Conservation efforts are currently in a state of transition, with active debate about the relative importance of preserving historical landscapes with minimal human impact on one end of the ideological spectrum versus manipulating novel ecosystems that result from human activities on the other. Although the two approaches are often presented as dichotomous, in fact they are connected by a continuum of practices, and both are needed. In most landscapes, maximizing conservation success will require more integration of paleobiology and conservation biology because in a rapidly changing world, a long-term perspective (encompassing at least millennia) is necessary to specify and select appropriate conservation targets and plans. Although adding this long-term perspective will be essential to sustain biodiversity and all of the facets of nature that humans need as we continue to rapidly change the world over the next few decades, maximizing the chances of success will also require dealing with the root causes of the conservation crisis: rapid growth of the human population, increasing per capita consumption especially in developed countries, and anthropogenic climate change that is rapidly pushing habitats outside the bounds experienced by today’s species. Fewer than 900 mountain gorillas are left in the world, and their continued existence depends upon the choices humans make, exemplifying the state of many species and ecosystems. Can conservation biology save biodiversity and all the aspects of nature that people need and value as 3 billion more of us are added to the planet by 2050, while climate continues to change to states outside the bounds that most of today’s ecosystems have ever experienced? Photo: E. A. Hadly, at Volcanoes National Park, Rwanda Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Confronting and resolving competing values behind conservation objectives

Daniel S. Karp; Chase D. Mendenhall; Elizabeth Callaway; Luke O. Frishkoff; Peter Kareiva; Paul R. Ehrlich; Gretchen C. Daily

Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches), and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites.


PLOS ONE | 2013

Forest Restoration and Parasitoid Wasp Communities in Montane Hawai’i

Rachelle K. Gould; Liba Pejchar; Sara G. Bothwell; Berry J. Brosi; Stacie Wolny; Chase D. Mendenhall; Gretchen C. Daily

Decision-makers increasingly seek scientific guidance on investing in nature, but biodiversity remains difficult to estimate across diverse landscapes. Here, we develop empirically based models for quantifying biodiversity across space. We focus on agricultural lands in the tropical forest biome, wherein lies the greatest potential to conserve or lose biodiversity. We explore two questions, drawing from empirical research oriented toward pioneering policies in Costa Rica. First, can remotely sensed tree cover serve as a reliable basis for improved estimation of biodiversity, from plots to regions? Second, how does tropical biodiversity change across the land-use gradient from native forest to deforested cropland and pasture? We report on understory plants, nonflying mammals, bats, birds, reptiles, and amphibians. Using data from 67,737 observations of 908 species, we test how tree cover influences biodiversity across space. First, we find that fine-scale mapping of tree cover predicts biodiversity within a taxon-specific radius (of 30–70 m) about a point in the landscape. Second, nearly 50% of the tree cover in our study region is embedded in countryside forest elements, small (typically 0.05–100 ha) clusters or strips of trees on private property. Third, most species use multiple habitat types, including crop fields and pastures (to which 15% of species are restricted), although some taxa depend on forest (57% of species are restricted to forest elements). Our findings are supported by comparisons of 90 studies across Latin America. They provide a basis for a planning tool that guides investments in tropical forest biodiversity similar to those for securing ecosystem services.


The American Naturalist | 2017

Phylogeny, Traits, and Biodiversity of a Neotropical Bat Assemblage: Close Relatives Show Similar Responses to Local Deforestation

Hannah K. Frank; Luke O. Frishkoff; Chase D. Mendenhall; Gretchen C. Daily; Elizabeth A. Hadly

Significance Conservationists have become embroiled in debates over different motivations for conserving nature. One path forward is to acknowledge that nature is valued for many reasons and that managing for one objective can fail to achieve others. We categorize conservation objectives and provide a framework for comparing trade-offs between alternative strategies for conserving Costa Rican birds. Specifically, we focus on mitigating species extinction risk, preventing population extirpations, restoring historic assemblages, and conserving evolutionarily unique, culturally significant, and ecosystem-service providing species. Our approach pinpoints strategies for resolving trade-offs and achieving multiple conservation objectives; for example, by maintaining forest cover surrounding tropical farms. These insights demonstrate the advances needed in conservation strategy to design multifunctional interventions. Diverse motivations for preserving nature both inspire and hinder its conservation. Optimal conservation strategies may differ radically depending on the objective. For example, creating nature reserves may prevent extinctions through protecting severely threatened species, whereas incentivizing farmland hedgerows may benefit people through bolstering pest-eating or pollinating species. Win-win interventions that satisfy multiple objectives are alluring, but can also be elusive. To achieve better outcomes, we developed and implemented a practical typology of nature conservation framed around seven common conservation objectives. Using an intensively studied bird assemblage in southern Costa Rica as a case study, we applied the typology in the context of biodiversity’s most pervasive threat: habitat conversion. We found that rural habitats in a varied tropical landscape, comprising small farms, villages, forest fragments, and forest reserves, provided biodiversity-driven processes that benefit people, such as pollination, seed dispersal, and pest consumption. However, species valued for their rarity, endemism, and evolutionary distinctness declined in farmland. Conserving tropical forest on farmland increased species that international tourists value, but not species discussed in Costa Rican newspapers. Despite these observed trade-offs, our analyses also revealed promising synergies. For example, we found that maintaining forest cover surrounding farms in our study region would likely enhance most conservation objectives at minimal expense to others. Overall, our typology provides a framework for resolving the competing objectives of modern conservation.

Collaboration


Dive into the Chase D. Mendenhall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel S. Karp

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federico Oviedo Brenes

Organization for Tropical Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Kremen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge