Chase M. Mason
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chase M. Mason.
Journal of Ecology | 2014
Lisa A. Donovan; Chase M. Mason; Alan W. Bowsher; Eric W. Goolsby; Caitlin D. A. Ishibashi
Summary 1. Efforts to understand the effects of plant traits on carbon and nutrient cycling have recently focused on species variation and the potential for species data to improve predictions of past, present and future variation in ecosystems. However, the evolutionary lability of relevant traits among closely related species and the extent of intraspecific variation warrant further consideration. 2. Here, we examine interspecific and intraspecific variation in leaf N, LMA, root N and SRL at multiple scales, using Helianthus as a representative study system. 3. Substantial evolutionary lability of traits is demonstrated by interspecific variation in phylogenetically explicit analyses of closely related Helianthus species, and population differentiation of wild H. anomalus and cultivated H. annuus. 4. Intraspecific variation in leaf N and LMA, including genetic, environmental and ontogenetic responses, demonstrates that trait values for a single species can encompass a surprisingly large portion of the range encompassed by species in the leaf economics spectrum. 5. Synthesis. We recommend using data from selected natural populations to model effects of leaf N and LMA on decomposition, while using data from common garden experiments to determine evolutionary lability and thus inform potential for evolutionary change. If the high evolutionary lability of traits demonstrated for Helianthus is found for other important genera, this would suggest that these key ecophysiological traits are likely to respond to the selective pressures of global climate and land-use change.
Evolution | 2015
Chase M. Mason; Lisa A. Donovan
The leaf economics spectrum (LES) describes a major axis of plant functional trait variation worldwide, defining suites of leaf traits aligned with resource‐acquisitive to resource‐conservative ecological strategies. The LES has been interpreted to arise from leaf‐level trade‐offs among ecophysiological traits common to all plants. However, it has been suggested that the defining leaf‐level trade‐offs of the LES may not hold within specific functional groups (e.g., herbs) nor within many groups of closely related species, which challenges the usefulness of the LES paradigm across evolutionary scales. Here, we examine the evolution of the LES across 28 species of the diverse herbaceous genus Helianthus (the sunflowers), which occupies a wide range of habitats and climate variation across North America. Using a phylogenetic comparative approach, we find repeated evolution of more resource‐acquisitive LES strategies in cooler, drier, and more fertile environments. We also find macroevolutionary correlations among LES traits that recapitulate aspects of the global LES, but with one major difference: leaf mass per area is uncorrelated with leaf lifespan. This indicates that whole‐plant processes likely drive variation in leaf lifespan across Helianthus, rather than leaf‐level trade‐offs. These results suggest that LES patterns do not reflect universal physiological trade‐offs at small evolutionary scales.
American Journal of Botany | 2015
Jessica D. Stephens; Willie L. Rogers; Chase M. Mason; Lisa A. Donovan; Russell L. Malmberg
PREMISE OF THE STUDY The sunflower genus Helianthus has long been recognized as economically significant, containing species of agricultural and horticultural importance. Additionally, this genus displays a large range of phenotypic and genetic variation, making Helianthus a useful system for studying evolutionary and ecological processes. Here we present the most robust Helianthus phylogeny to date, laying the foundation for future studies of this genus. METHODS We used a target enrichment approach across 37 diploid Helianthus species/subspecies with a total of 103 accessions. This technique garnered 170 genes used for both coalescent and concatenation analyses. The resulting phylogeny was additionally used to examine the evolution of life history and growth form across the genus. KEY RESULTS Coalescent and concatenation approaches were largely congruent, resolving a large annual clade and two large perennial clades. However, several relationships deeper within the phylogeny were more weakly supported and incongruent among analyses including the placement of H. agrestis, H. cusickii, H. gracilentus, H. mollis, and H. occidentalis. CONCLUSIONS The current phylogeny supports three major clades including a large annual clade, a southeastern perennial clade, and another clade of primarily large-statured perennials. Relationships among taxa are more consistent with early phylogenies of the genus using morphological and crossing data than recent efforts using single genes, which highlight the difficulties of phylogenetic estimation in genera known for reticulate evolution. Additionally, conflict and low support at the base of the perennial clades may suggest a rapid radiation and/or ancient introgression within the genus.
Journal of Experimental Botany | 2014
Lawren Sack; Christine Scoffoni; Grace P. John; Hendrik Poorter; Chase M. Mason; Rodrigo Méndez-Alonzo; Lisa A. Donovan
Highlight text In a previous paper we clarified the roles of veins in determining leaf function. Here we contribute further data and address the concerns of Blonder et al. (2014), and provide guidance for phenotypic modelling.
Oecologia | 2015
Chase M. Mason; Lisa A. Donovan
Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.
Plant Physiology | 2014
Lawren Sack; Marissa Caringella; Christine Scoffoni; Chase M. Mason; Michael Rawls; Lars Markesteijn; Lourens Poorter
Measurements of leaf vein length per area do not increase systematically with image magnification, contrary to a recent claim, given appropriate attention toward accuracy and precision. Leaf vein length per unit leaf area (VLA; also known as vein density) is an important determinant of water and sugar transport, photosynthetic function, and biomechanical support. A range of software methods are in use to visualize and measure vein systems in cleared leaf images; typically, users locate veins by digital tracing, but recent articles introduced software by which users can locate veins using thresholding (i.e. based on the contrasting of veins in the image). Based on the use of this method, a recent study argued against the existence of a fixed VLA value for a given leaf, proposing instead that VLA increases with the magnification of the image due to intrinsic properties of the vein system, and recommended that future measurements use a common, low image magnification for measurements. We tested these claims with new measurements using the software LEAFGUI in comparison with digital tracing using ImageJ software. We found that the apparent increase of VLA with magnification was an artifact of (1) using low-quality and low-magnification images and (2) errors in the algorithms of LEAFGUI. Given the use of images of sufficient magnification and quality, and analysis with error-free software, the VLA can be measured precisely and accurately. These findings point to important principles for improving the quantity and quality of important information gathered from leaf vein systems.
New Phytologist | 2016
Chase M. Mason; Alan W. Bowsher; Breanna L. Crowell; Rhodesia M. Celoy; Chung-Jui Tsai; Lisa A. Donovan
Leaf defenses are widely recognized as key adaptations and drivers of plant evolution. Across environmentally diverse habitats, the macroevolution of leaf defenses can be predicted by the univariate trade-off model, which predicts that defenses are functionally redundant and thus trade off, and the resource availability hypothesis, which predicts that defense investment is determined by inherent growth rate and that higher defense will evolve in lower resource environments. Here, we examined the evolution of leaf physical and chemical defenses and secondary metabolites in relation to environmental characteristics and leaf economic strategy across 28 species of Helianthus (the sunflowers). Using a phylogenetic comparative approach, we found few evolutionary trade-offs among defenses and no evidence for defense syndromes. We also found that leaf defenses are strongly related to leaf economic strategy, with higher defense in more resource-conservative species, although there is little support for the evolution of higher defense in low-resource habitats. A wide variety of physical and chemical defenses predict resistance to different insect herbivores, fungal pathogens, and a parasitic plant, suggesting that most sunflower defenses are not redundant in function and that wild Helianthus represents a rich source of variation for the improvement of crop sunflower.
Population Ecology | 2018
Richard P. Shefferson; Chase M. Mason; Kimberly M. Kellett; Eric W. Goolsby; Erin Coughlin; R. Wes Flynn
Conservation management for environmental sustainability is now ubiquitous. The ecological effects of these actions are well-intentioned and well-known. Although conservation biologists and managers increasingly incorporate evolutionary considerations into management plans, the evolutionary consequences of management strategies have remained relatively unexplored and unconsidered. But what are the evolutionary consequences? Here, we advocate a new research agenda focused on identifying, predicting, and countering the evolutionary consequences of conservation management. We showcase the examples of park creation and invasive species management, and speculate further on five other major methods of management. Park creation may cause selection for altered dispersal and behavior that utilizes human foods and structures. Management of invasive species may favor the evolution of resistance to or tolerance of control methods. In these and other cases, evolution may cause deviations from the predicted consequences of management strategies optimized without considering evolution, particularly when management results in or coincides with major environmental change, if population size change strongly, or if life histories are short enough to allow more rapid evolution. We call for research focused on: (1) experimental predictions and tests of evolution under particular management strategies, (2) widespread monitoring of managed populations and communities, and (3) meta-analysis and theoretical study aimed at simplifying the process of evolutionary prediction, particularly at systematizing a means of identifying traits likely to evolve due to likely existing genetic variance or high mutation rates. Ultimately, conservation biologists should incorporate evolutionary prediction into management planning to prevent the evolutionary domestication of the species that they are trying to protect.
Annals of Botany | 2017
Chase M. Mason; Eric W. Goolsby; Kaleigh E. Davis; Devon V. Bullock; Lisa A. Donovan
Background and Aims Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. Methods A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Key Results Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Conclusions Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant fitness and environmental adaptation.
Ecology and Evolution | 2016
Alan W. Bowsher; Chase M. Mason; Eric W. Goolsby; Lisa A. Donovan
Abstract Recent work suggests variation in plant growth strategies is governed by a tradeoff in resource acquisition and use, ranging from a rapid resource acquisition strategy to a resource‐conservative strategy. While evidence for this tradeoff has been found in leaves, knowledge of root trait strategies, and whether they reflect adaptive differentiation across environments, is limited. In the greenhouse, we investigated variation in fine root morphology (specific root length and tissue density), chemistry (nitrogen concentration and carbon:nitrogen), and anatomy (root cross‐sectional traits) in populations of 26 Helianthus species and sister Phoebanthus tenuifolius. We also compared root trait variation in this study with leaf trait variation previously reported in a parallel study of these populations. Root traits varied widely and exhibited little phylogenetic signal, suggesting high evolutionary lability. Specific root length and root tissue density were weakly negatively correlated, but neither was associated with root nitrogen, providing little support for a single axis of root trait covariation. Correlations between traits measured in the greenhouse and native site characteristics were generally weak, suggesting a variety of equally viable root trait combinations exist within and across environments. However, high root nitrogen was associated with lower xylem vessel number and cross‐sectional area, suggesting a tradeoff between nutrient investment and water transport capacity. This led to correlations between root and leaf traits that were not always consistent with an acquisition–conservation tradeoff at the whole‐plant level. Given that roots must balance acquisition of water and nutrients with functions like anchorage, exudation, and microbial symbioses, the varied evidence for root trait covariation likely reflects the complexity of interacting selection pressures belowground. Similarly, the lack of evidence for a single acquisition–conservation tradeoff at the whole‐plant level likely reflects the vastly different selection pressures shaping roots and leaves, and the resources they are optimized to obtain.