Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chase W. Kessinger is active.

Publication


Featured researches published by Chase W. Kessinger.


Experimental Biology and Medicine | 2009

Multifunctional micellar nanomedicine for cancer therapy.

Elvin Blanco; Chase W. Kessinger; Baran D. Sumer; Jinming Gao

Polymeric micelles are supramolecular, core-shell nanoparticles that offer considerable advantages for cancer diagnosis and therapy. Their relatively small size (10–100 nm), ability to solubilize hydrophobic drugs as well as imaging agents, and improved pharmacokinetics provide a useful bioengineering platform for cancer applications. Several polymeric micelle formulations are currently undergoing phase I/II clinical trials, which have shown improved antitumor efficacy and reduced systemic toxicity. This minireview will focus on recent advancements in the multifunctional design of micellar nanomedicine with tumor targeting, stimulated drug release, and cancer imaging capabilities. Such functionalization strategies result in enhanced micellar accumulation at tumor sites, higher drug bioavailability, as well as improved tumor diagnosis and visualization of therapy. Ultimately, integrated nanotherapeutic systems (e.g., theranostic nanomedicine) may prove essential to address the challenges of tumor heterogeneity and adaptive resistance to achieve efficacious treatment of cancer.


Molecular Pharmaceutics | 2010

MRI-Visible Micellar Nanomedicine for Targeted Drug Delivery to Lung Cancer Cells

Jagadeesh Setti Guthi; Su Geun Yang; Gang Huang; Shunzi Li; Chalermchai Khemtong; Chase W. Kessinger; Michael Peyton; John D. Minna; Kathlynn C. Brown; Jinming Gao

Polymeric micelles are emerging as a highly integrated nanoplatform for cancer targeting, drug delivery and tumor imaging applications. In this study, we describe a multifunctional micelle (MFM) system that is encoded with a lung cancer-targeting peptide (LCP), and encapsulated with superparamagnetic iron oxide (SPIO) and doxorubicin (Doxo) for MR imaging and therapeutic delivery, respectively. The LCP-encoded MFM showed significantly increased alpha(v)beta(6)-dependent cell targeting in H2009 lung cancer cells over a scrambled peptide (SP)-encoded MFM control as well as in an alpha(v)beta(6)-negative H460 cell control. (3)H-Labeled MFM nanoparticles were used to quantify the time- and dose-dependent cell uptake of MFM nanoparticles with different peptide encoding (LCP vs SP) and surface densities (20% and 40%) in H2009 cells. LCP functionalization of the micelle surface increased uptake of the MFM by more than 3-fold compared to the SP control. These results were confirmed by confocal laser scanning microscopy, which further demonstrated the successful Doxo release from MFM and accumulation in the nucleus. SPIO clustering inside the micelle core resulted in high T(2) relaxivity (>400 Fe mM(-1) s(-1)) of the resulting MFM nanoparticles. T(2)-weighted MRI images showed clear contrast differences between H2009 cells incubated with LCP-encoded MFM over the SP-encoded MFM control. An ATP activity assay showed increased cytotoxicity of LCP-encoded MFM over SP-encoded MFM in H2009 cells (IC(50) values were 28.3 +/- 6.4 nM and 73.6 +/- 6.3 nM, respectively; p < 0.005). The integrated diagnostic and therapeutic design of MFM nanomedicine potentially allows for image-guided, target-specific treatment of lung cancer.


Chemical Communications | 2009

Polymeric nanomedicine for cancer MR imaging and drug delivery

Chalermchai Khemtong; Chase W. Kessinger; Jinming Gao

Multifunctional nanomedicine is emerging as a highly integrated platform that allows for molecular diagnosis, targeted drug delivery, and simultaneous monitoring and treatment of cancer. Advances in polymer and materials science are critical for the successful development of these multi-component nanocomposites in one particulate system with such a small size confinement (<200 nm). Currently, several nanoscopic therapeutic and diagnostic systems have been translated into clinical practice. In this feature article, we will provide an up-to-date review on the development and biomedical applications of nanocomposite materials for cancer diagnosis and therapy. An overview of each functional component, i.e. polymer carriers, MR imaging agents, and therapeutic drugs, will be presented. Integration of different functional components will be illustrated in several highlighted examples to demonstrate the synergy of the multifunctional nanomedicine design.


Journal of Controlled Release | 2011

Nanoscopic Micelle Delivery Improves the Photophysical Properties and Efficacy of Photodynamic Therapy of Protoporphyrin IX

Huiying Ding; Baran D. Sumer; Chase W. Kessinger; Ying Dong; Gang Huang; David A. Boothman; Jinming Gao

Nanodelivery systems have shown considerable promise in increasing the solubility and delivery efficiency of hydrophobic photosensitizers for photodynamic therapy (PDT) applications. In this study, we report the preparation and characterization of polymeric micelles that incorporate protoporphyrin IX (PpIX), a potent photosensitizer, using non-covalent encapsulation and covalent conjugation methods. Depending on the incorporation method and PpIX loading percentage, PpIX existed as a monomer, dimer or aggregate in the micelle core. The PpIX state directly affected the fluorescence intensity and (1)O(2) generation efficiency of the resulting micelles in aqueous solution. Micelles with lower PpIX loading density (e.g. 0.2%) showed brighter fluorescence and higher (1)O(2) yield than those with higher PpIX loading density (e.g. 4%) in solution. However, PDT efficacy in H2009 lung cancer cells showed an opposite trend. In particular, 4% PpIX-conjugated micelles demonstrated the largest PDT therapeutic window, as indicated by the highest phototoxicity and relatively low dark toxicity. Results from this study contribute to the fundamental understanding of nanoscopic structure-property relationships of micelle-delivered PpIX and establish a viable micelle formulation (i.e. 4% PpIX-conjugated micelles) for in vivo evaluation of antitumor efficacy.


Cancer Research | 2010

β-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy

Elvin Blanco; Erik A. Bey; Chalermchai Khemtong; Su Geun Yang; Jagadeesh Setti-Guthi; Huabing Chen; Chase W. Kessinger; Kevin A. Carnevale; William G. Bornmann; David A. Boothman; Jinming Gao

Lung cancer is the leading cause of cancer-related deaths with current chemotherapies lacking adequate specificity and efficacy. Beta-lapachone (beta-lap) is a novel anticancer drug that is bioactivated by NAD(P)H:quinone oxidoreductase 1, an enzyme found specifically overexpressed in non-small cell lung cancer (NSCLC). Herein, we report a nanotherapeutic strategy that targets NSCLC tumors in two ways: (a) pharmacodynamically through the use of a bioactivatable agent, beta-lap, and (b) pharmacokinetically by using a biocompatible nanocarrier, polymeric micelles, to achieve drug stability, bioavailability, and targeted delivery. Beta-lap micelles produced by a film sonication technique were small ( approximately 30 nm), displayed core-shell architecture, and possessed favorable release kinetics. Pharmacokinetic analyses in mice bearing subcutaneous A549 lung tumors showed prolonged blood circulation (t(1/2), approximately 28 h) and increased accumulation in tumors. Antitumor efficacy analyses in mice bearing subcutaneous A549 lung tumors and orthotopic Lewis lung carcinoma models showed significant tumor growth delay and increased survival. In summary, we have established a clinically viable beta-lap nanomedicine platform with enhanced safety, pharmacokinetics, and antitumor efficacy for the specific treatment of NSCLC tumors.


Jacc-cardiovascular Imaging | 2012

Molecular Imaging of Fibrin Deposition in Deep Vein Thrombosis Using Fibrin-Targeted Near-Infrared Fluorescence

Tetsuya Hara; Brijesh Bhayana; Brian Thompson; Chase W. Kessinger; Ashok Khatri; Jason R. McCarthy; Ralph Weissleder; Charles P. Lin; Guillermo J. Tearney; Farouc A. Jaffer

OBJECTIVES The goal of this study was to develop and validate a new fibrin-targeted imaging agent that enables high-resolution near-infrared fluorescence (NIRF) imaging of deep vein thrombosis (DVT). BACKGROUND NIRF imaging of fibrin could enable highly sensitive and noninvasive molecular imaging of thrombosis syndromes in vivo. METHODS A fibrin-targeted peptide was conjugated to a near-infrared fluorophore Cy7, termed FTP11-Cy7. The NIRF peptide is based on a fibrin-specific imaging agent that has completed Phase II clinical magnetic resonance imaging trials. In vitro binding of FTP11-Cy7 to human plasma clots was assessed by using fluorescence reflectance imaging. Next, FTP11-Cy7 was intravenously injected in mice with femoral DVT induced by topical 7.5% ferric chloride treatment. Intravital fluorescence microscopy and noninvasive fluorescence molecular tomography-computed tomography were performed in 32 mice with DVT, followed by histological analyses. RESULTS In vitro human clot-binding analyses showed a 6-fold higher NIRF clot target-to-background ratio (TBR) of FTP11-Cy7 than free Cy7 (6.3 ± 0.34 vs. 1.2 ± 0.03; p < 0.0001). The thrombus TBR of acute and subacute femoral DVT with FTP11-Cy7 obtained by using intravital fluorescence microscopy was >400% higher than control free Cy7. Binding of FTP11-Cy7 to thrombi was blocked by a 100-fold excess of unlabeled competitor peptide both in vitro and in vivo (p < 0.001 for each). Histological analyses confirmed that FTP11-Cy7 specifically accumulated in thrombi. Noninvasive fluorescence molecular tomography-computed tomography imaging of fibrin in jugular DVT demonstrated strong NIRF signal in thrombi compared with sham-operated jugular veins (mean TBR 3.5 ± 0.7 vs. 1.5 ± 0.3; p < 0.05). CONCLUSIONS The fibrin-targeted NIRF agent FTP11-Cy7 was shown to avidly and specifically bind human and murine thrombi, and enable sensitive, multimodal intravital and noninvasive NIRF molecular imaging detection of acute and subacute murine DVT in vivo.


Otolaryngology-Head and Neck Surgery | 2010

Polymeric micelle nanoparticles for photodynamic treatment of head and neck cancer cells

Evan M. Cohen; Huiying Ding; Chase W. Kessinger; Chalermchai Khemtong; Jinming Gao; Baran D. Sumer

Objective: To encapsulate 5,10,15,20-tetrakis(meso-hydroxyphenyl)porphyrin (mTHPP), a photosensitizer, into polymeric micelles; characterize the micelles; and test in vitro photodynamic therapy efficacy against human head and neck cancer cells. Study Design: A nanoparticle design, fabrication, and in vitro testing study. Setting: Polymer chemistry laboratory. Subjects and Methods: Micelles encapsulating mTHPP were produced, and micellar size was measured. Ultraviolet visible spectra and fluorescence spectroscopy were used to characterize the mTHPP-loaded micelles. In vitro cell culture using HSC-3 and HN-5 cancer cells was performed to test the photodynamic therapy efficacy of the micelles using confocal microscopy and method of transcriptional and translational (MTT) assay. Results: mTHPP was encapsulated with high loading efficiency (> 85%) and density (up to 17%) into micelles. Micelle size was 30.6 ± 3.3 nm by transmission electron microscopy and 30.8 ± 0.6 nm by dynamic light scattering. The absorption maximum for each sample was 418 nm, and fluorescent spectroscopy revealed quenching with maximal fluorescence at five percent loading. Significant cytotoxicity was observed with confocal microscopy when HSC-3 cells were treated with 10 percent mTHPP micelles, with 100 percent cytotoxicity within the zone of laser light exposure at 420 nm. Phototoxicity and dark toxicity against HSC-3 and HN-5 cells measured using the MTT assay with five and 10 percent loaded mTHPP micelles demonstrated greater than 90 percent cytotoxicity with photodynamic therapy and less than 10 percent dark toxicity at a micelle concentration of 25 μg/mL for both cell lines. Conclusion: Micelles were able to encapsulate and solubilize mTHPP at high loading densities with uniform size distribution. These micelles exhibit fluorescence and photodynamic therapy mediated cytotoxicity against head and neck cancer cells in vitro.


PLOS ONE | 2013

Characterization of Lung Cancer by Amide Proton Transfer (APT) Imaging: An In-Vivo Study in an Orthotopic Mouse Model

Osamu Togao; Chase W. Kessinger; Gang Huang; Todd C. Soesbe; Koji Sagiyama; Ivan Dimitrov; A. Dean Sherry; Jinming Gao; Masaya Takahashi

Amide proton transfer (APT) imaging is one of the chemical exchange saturation transfer (CEST) imaging methods which images the exchange between protons of free tissue water and the amide groups (−NH) of endogenous mobile proteins and peptides. Previous work suggested the ability of APT imaging for characterization of the tumoral grade in the brain tumor. In this study, we tested the feasibility of in-vivo APT imaging of lung tumor and investigated whether the method could differentiate the tumoral types on orthotopic tumor xenografts from two malignant lung cancer cell lines. The results revealed that APT imaging is feasible to quantify lung tumors in the moving lung. The measured APT effect was higher in the tumor which exhibited more active proliferation than the other. The present study demonstrates that APT imaging has the potential to provide a characterization test to differentiate types or grade of lung cancer noninvasively, which may eventually reduce the need invasive needle biopsy or resection for lung cancer.


Experimental Biology and Medicine | 2010

In vivo angiogenesis imaging of solid tumors by αvβ3-targeted, dual-modality micellar nanoprobes

Chase W. Kessinger; Chalermchai Khemtong; Osamu Togao; Masaya Takahashi; Baran D. Sumer; Jinming Gao

The objective of this study was to develop and evaluate an αv β 3-specific nanoprobe consisting of fluorescent superparamagnetic polymeric micelles (FSPPM) for in vivo imaging of tumor angiogenesis. Spherical micelles were produced using poly(ethylene glycol)-b-poly(d,l-lactide) co-polymers conjugated with tetramethylrhodamine, a fluorescent dye, and loaded with superparamagnetic iron oxide nanoparticles. The resulting micelle diameter was 50–70 nm by dynamic light scattering and transmission electron microscopy measurements. Micelles were encoded with an αv β 3-specific peptide, cyclic RGDfK, and optimized for maximum fluorescence and targeting in αv β 3-overexpressing cells in vitro. In mice, cRGD-FSPPM-treated animals showed αv β 3-specific FSPPM accumulation in human lung cancer subcutaneous tumor xenografts. Together with the histological validation, the three-dimensional gradient echo magnetic resonance imaging (MRI) data provide high spatial resolution mapping and quantification of angiogenic vasculature in an animal tumor model using targeted, ultrasensitive MRI nanoprobes.


Science Signaling | 2014

RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis

Jessica Lauriol; Kimberly Keith; Fabrice Jaffré; Anthony D. Couvillon; Abdel Saci; Sanjeewa A. Goonasekera; Jason R. McCarthy; Chase W. Kessinger; Jianxun Wang; Qingen Ke; Peter M. Kang; Jeffery D. Molkentin; Christopher L. Carpenter; Maria I. Kontaridis

Mice lacking the GTPase RhoA in cardiomyocytes develop greater pathological hypertrophy but reduced fibrosis with chronic stress to the heart. Separating Cardiac Hypertrophy and Fibrosis Over time, overloaded hearts typically become larger (a process called compensatory hypertrophy) to deal with the increased pressure. If prolonged, as occurs in untreated hypertension, the pressure overload leads to pathological hypertrophy and fibrosis, and ultimately leading to heart failure. Lauriol et al. found that mice with a cardiomyocyte-specific deficiency of RhoA, a GTP (guanosine 5′-triphosphate)–regulated protein, developed increased pathological hypertrophy but reduced fibrosis with chronic cardiac stress. These results suggest that targeting downstream effectors of RhoA, rather than RhoA itself, may be better for treating pathologies associated with heart failure. The Ras-related guanosine triphosphatase RhoA mediates pathological cardiac hypertrophy, but also promotes cell survival and is cardioprotective after ischemia/reperfusion injury. To understand how RhoA mediates these opposing roles in the myocardium, we generated mice with a cardiomyocyte-specific deletion of RhoA. Under normal conditions, the hearts from these mice showed functional, structural, and growth parameters similar to control mice. Additionally, the hearts of the cardiomyocyte-specific, RhoA-deficient mice subjected to transverse aortic constriction (TAC)—a procedure that induces pressure overload and, if prolonged, heart failure—exhibited a similar amount of hypertrophy as those of the wild-type mice subjected to TAC. Thus, neither normal cardiac homeostasis nor the initiation of compensatory hypertrophy required RhoA in cardiomyocytes. However, in response to chronic TAC, hearts from mice with cardiomyocyte-specific deletion of RhoA showed greater dilation, with thinner ventricular walls and larger chamber dimensions, and more impaired contractile function than those from control mice subjected to chronic TAC. These effects were associated with aberrant calcium signaling, as well as decreased activity of extracellular signal–regulated kinases 1 and 2 (ERK1/2) and AKT. In addition, hearts from mice with cardiomyocyte-specific RhoA deficiency also showed less fibrosis in response to chronic TAC, with decreased transcriptional activation of genes involved in fibrosis, including myocardin response transcription factor (MRTF) and serum response factor (SRF), suggesting that the fibrotic response to stress in the heart depends on cardiomyocyte-specific RhoA signaling. Our data indicated that RhoA regulates multiple pathways in cardiomyocytes, mediating both cardioprotective (hypertrophy without dilation) and cardio-deleterious effects (fibrosis).

Collaboration


Dive into the Chase W. Kessinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinming Gao

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chalermchai Khemtong

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baran D. Sumer

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge