Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chasity M. Cox is active.

Publication


Featured researches published by Chasity M. Cox.


Poultry Science | 2010

Immune responses to dietary β-glucan in broiler chicks during an Eimeria challenge

Chasity M. Cox; Lindsay H. Sumners; Sungwon Kim; A. P. McElroy; M. R. Bedford; Rami A. Dalloul

Escalating consumer concerns regarding pathogen resistance have placed the poultry industry under mounting pressure to eliminate the use of chemotherapeutic agents as feed additives. One possible alternative receiving increased attention is the use of immunomodulators such as β-glucan. A study was conducted to investigate the effects of a yeast-derived β-glucan (Auxoferm YGT) on broiler chick performance, lesion scores, and immune-related gene expression during a mixed Eimeria infection. Day-old chicks were fed diets containing 0, 0.02, or 0.1% YGT. On d 8 posthatch, one-half of the replicate pens were challenged with a mixed inoculum of Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Measurements were taken and samples collected on d 4, 10, 14, and 21 posthatch. Dietary supplementation had no effect on performance or mortality. On d 14, 3 birds per pen (n = 24/treatment) were scored for intestinal coccidia lesions. Gross lesion severity was significantly reduced in birds supplemented with 0.1% YGT. On d 10, inducible nitric oxide synthase (iNOS) expression was downregulated in the jejunum of challenged birds fed 0.1% YGT. Expression of iNOS in the ileum was downregulated in the nonchallenged birds, but upregulated in the challenged birds fed 0.1% YGT on d 14. Interleukin (IL)-18 was upregulated in the jejunum of 0.1% YGT-treated birds. Interferon (IFN)-γ expression was decreased in challenged and nonchallenged birds fed 0.1% YGT. The IL-4 expression was downregulated in the nonchallenged birds with 0.1% YGT diet supplementation. The IL-13 and mucin-1 levels were also reduced due to β-glucan supplementation. Mucin-2 expression was increased in the nonchallenged birds, but decreased in the infected birds fed 0.1% YGT. These results suggest that although Auxoferm YGT at doses of 0.02 and 0.1% does not influence performance, it significantly reduces lesion severity and is capable of altering immune-related gene expression profiles, favoring an enhanced T helper type-1 cell response during coccidiosis.


Poultry Science | 2010

Performance and immune responses to dietary β-glucan in broiler chicks

Chasity M. Cox; Lindsay H. Stuard; Sungwon Kim; A. P. McElroy; M. R. Bedford; Rami A. Dalloul

During the first week posthatch, the avian immune system is immature and inefficient at protecting chicks from invading pathogens. Among immunomodulators, beta-glucans are known as biological response modifiers due to their ability to activate the immune system. Current research suggests that beta-glucans may enhance avian immunity; however, very little is known about their influence on regulation of immune function. A study was performed to evaluate the effects of dietary beta-glucan on growth performance, immune organ weights, peripheral blood cell profiles, and immune-related gene expression in the intestine. One-day-old chicks were fed a diet containing 0, 0.02, or 0.1% yeast beta-glucan (n = 30/treatment). On d 7 and 14 posthatch, body and relative immune organ weights were measured and small intestinal sections were collected to evaluate gene expression by quantitative real-time PCR. Peripheral blood samples were also collected to determine heterophil:lymphocyte ratios. Supplementation of beta-glucan did not significantly affect BW gains, and no significant differences were observed among groups for relative immune organ weights or heterophil:lymphocyte ratios. Compared with controls, expression of interleukin (IL)-8 was downregulated in the beta-glucan-treated groups on d 7 and 14. On d 14, beta-glucan inclusion resulted in increased inducible nitric oxide synthase expression. Expression of IL-18 was upregulated on d 7 but reduced on d 14 due to beta-glucan supplementation. On d 7, interferon-gamma and IL-4 expression decreased in the beta-glucan-treated groups. However, on d 14, IL-4 expression was upregulated in the supplemented groups. Intestinal expression of IL-13 was also downregulated in the beta-glucan-treated birds on d 7. These results suggest that dietary inclusion of beta-glucans altered the cytokine-chemokine balance; however, it did not elicit a robust immune response in the absence of a challenge, resulting in no deleterious effects on performance.


Experimental Parasitology | 2011

Expression of Toll-like receptors and antimicrobial peptides during Eimeria praecox infection in chickens

Lindsay H. Sumners; Kate B. Miska; Mark C. Jenkins; Ray H. Fetterer; Chasity M. Cox; Sungwon Kim; Rami A. Dalloul

Intestinal colonization of avian species by Eimeria parasites results in the enteric disease, coccidiosis. A study was carried out to assess the immunologic effects of Eimeria praecox infection on the gut of infected chickens. In Experiment 1, birds were orally gavaged with 50,000 E. praecox oocysts; in Experiment 2, an infection dosage of 500,000 E. praecox oocysts was used. Duodenal and jejunal intestinal sections were sampled consecutively on days 1-7 post-infection. Intestinal expression of innate immune gene transcripts was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Analysis of relative gene expression in Experiment 1 revealed an increase (P<0.05) in duodenal Toll-like receptor (TLR)3 expression on days 4 and 6 post-infection. TLR15 expression was significantly decreased in the duodenum of infected birds on day 2, and significantly increased on day 6 post-infection. In Experiment 2, TLR3 was significantly downregulated in the duodenum on day 7 post-infection; however, no significant results were observed in terms of TLR15 expression. TLR4 also exhibited decreased expression (P<0.05) on day 7 post-infection in both intestinal sections. Regarding antimicrobial peptide expression; in the first experiment, expression of liver-expressed antimicrobial peptide-2 (LEAP-2) in infected birds was significantly decreased in the duodenum on days 3 and 4, and in the jejunum on day 4. Similarly, Experiment 2 resulted in depression of LEAP-2 (P<0.05) on days 3-5 in the duodenum. In Experiment 1, cathelicidin antimicrobial peptide (CATHL3) was downregulated (P<0.05) in the jejunum of infected chickens on day 3 post-infection; however, CATHL3 results were non-significant in Experiment 2. Based on the differing results observed in each experiment, it was concluded that both TLR and antimicrobial peptide expression, and thus immunity may be dependent on infection load.


Developmental and Comparative Immunology | 2010

Molecular cloning and functional characterization of the avian macrophage migration inhibitory factor (MIF)

Sungwon Kim; Kate B. Miska; Mark C. Jenkins; Ray H. Fetterer; Chasity M. Cox; Lindsay H. Stuard; Rami A. Dalloul

Macrophage migration inhibitory factor (MIF) is recognized as a soluble factor produced by sensitized T lymphocytes and inhibits the random migration of macrophages. Recent studies have revealed a more prominent role for MIF as a multi-functional cytokine mediating both innate and adaptive immune responses. This study describes the cloning and functional characterization of avian MIF in an effort to better understand its role in innate and adaptive immunity, and potential use in poultry health applications. The full-length avian MIF gene was amplified from stimulated chicken lymphocytes and cloned into a prokaryotic expression vector. The confirmed 115 amino acid sequence of avian MIF has 71% identity with human and murine MIF. The bacterially expressed avian recombinant MIF (rChMIF) was purified, followed by endotoxin removal, and then tested by chemotactic assay and quantitative real-time PCR (qRT-PCR). Diff-Quick staining revealed a substantial decrease in migration of macrophages in the presence of 0.01microg/ml rChMIF. qRT-PCR analysis revealed that the presence of rChMIF enhanced levels of IL-1beta and iNOS during PBMCs stimulation with LPS. Additionally, the Con A-stimulated lymphocytes showed enhanced interferon (IFN)-gamma and IL-2 transcripts in the presence of rChMIF. Interestingly, addition of rChMIF to the stimulated PBMCs, in the presence of lymphocytes, showed anti-inflammatory function of rChMIF. To our knowledge, this study represents the first report for the functional characterization of avian MIF, demonstrating the inhibition of macrophage migration, similar to mammalian MIF, and the mediation of inflammatory responses during antigenic stimulation.


PLOS ONE | 2011

Eimeria Species and Genetic Background Influence the Serum Protein Profile of Broilers with Coccidiosis

Elizabeth R. Gilbert; Chasity M. Cox; Patricia M. Williams; A. P. McElroy; Rami A. Dalloul; W. Keith Ray; Adriana Barri; Derek A. Emmerson; Eric A. Wong; K. E. Webb

Background Coccidiosis is an intestinal disease caused by protozoal parasites of the genus Eimeria. Despite the advent of anti-coccidial drugs and vaccines, the disease continues to result in substantial annual economic losses to the poultry industry. There is still much unknown about the host response to infection and to date there are no reports of protein profiles in the blood of Eimeria-infected animals. The objective of this study was to evaluate the serum proteome of two genetic lines of broiler chickens after infection with one of three species of Eimeria. Methodology/Principal Findings Birds from lines A and B were either not infected or inoculated with sporulated oocysts from one of the three Eimeria strains at 15 d post-hatch. At 21 d (6 d post-infection), whole blood was collected and lesion scoring was performed. Serum was harvested and used for 2-dimensional gel electrophoresis. A total of 1,266 spots were quantitatively assessed by densitometry. Protein spots showing a significant effect of coccidia strain and/or broiler genetic line on density at P<0.05−0.01 (250 spots), P<0.01−0.001 (248 spots), and P<0.001 (314 spots) were excised and analyzed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Proteins were identified in 172 spots. A total of 46 different proteins were identified. Of the spots with a corresponding protein identification, 57 showed a main effect of coccidia infection and/or 2-way interaction of coccidia infection×broiler genetic line at P<0.001. Conclusions/Significance Several of the metabolic enzymes identified in this study are potential candidates for early diagnostic markers of E. acervulina infection including malate dehydrogenase 2, NADH dehydrogenase 1 alpha subcomplex 9, and an ATP synthase. These proteins were detected only in Line A birds that were inoculated with E. acervulina. Results from this study provide a basic framework for future research aimed at uncovering the complex biochemical mechanisms involved in host response to Eimeria infection and in identifying molecular targets for diagnostic screening and development of alternative preventative and therapeutic methods.


Beneficial Microbes | 2015

Immunomodulatory role of probiotics in poultry and potential in ovo application

Chasity M. Cox; Rami A. Dalloul

Recently, there has been an increasing debate regarding the use of sub-therapeutic antibiotics in animal feed. This stems from worries that this practice may result in microbial resistance to human antibiotics employed in treating infections, thus causing a human health concern. Due to this tension, the poultry industry is under mounting pressure to reduce the use of these agents as feed additives and alternative control methods have taken the forefront in the research community. Investigators are searching for the latest alternative that will protect flocks from disease, while not hindering performance or negatively impacting profit margins. Probiotic supplementation is one option currently being explored as a means of improving performance and reducing the amount and severity of enteric diseases in poultry, and subsequent contamination of poultry products for human consumption. Probiotics are live, nonpathogenic microorganisms known to have a positive effect on the host by beneficially modifying gut microbiota and modulating the immune system. This review will discuss the role of probiotics in poultry, including their effects on performance, immune response and host defence against disease. Also addressed will be the recent applications of supplementing probiotics in ovo as an innovative means to administer such additives to promote early colonisation of beneficial bacteria.


Cytokine | 2012

Molecular characterization and immunological roles of avian IL-22 and its soluble receptor IL-22 binding protein

Sungwon Kim; Laura Faris; Chasity M. Cox; Lindsay H. Sumners; Mark C. Jenkins; Ray H. Fetterer; Kate B. Miska; Rami A. Dalloul

As a member of the interleukin (IL)-10 family, IL-22 is an important mediator in modulating tissue responses during inflammation. Through activation of STAT3-signaling cascades, IL-22 induces proliferative and anti-apoptotic pathways, as well as antimicrobial peptides (AMPs), that help prevent tissue damage and aid in its repair. This study reports the cloning and expression of recombinant chicken IL-22 (rChIL-22) and its soluble receptor, rChIL22BP, and characterization of biological effects of rChIL-22 during inflammatory responses. Similar to observations with mammalian IL-22, purified rChIL-22 had no effect on either peripheral blood mononuclear cells (PBMCs) or lymphocytes. This was due to the low expression of the receptor ChIL22RA1 chain compared to ChIL10RB chain. rChIL-22 alone did not affect chicken embryo kidney cells (CEKCs); however, co-stimulation of CEKCs with LPS and rChIL-22 enhanced the production of pro-inflammatory cytokines, chemokines and AMPs. Furthermore, rChIL-22 alone stimulated and induced acute phase reactants in chicken embryo liver cells (CELCs). These effects of rChIL-22 were abolished by pre-incubation of rChIL-22 with rChIL22BP. Together, this study indicates an important role of ChIL-22 on epithelial cells and hepatocytes during inflammation.


Molecular Immunology | 2009

Molecular cloning and functional characterization of avian interleukin-19.

Sungwon Kim; Kate B. Miska; A. P. McElroy; Mark C. Jenkins; Ray H. Fetterer; Chasity M. Cox; Lindsay H. Stuard; Rami A. Dalloul

The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chicken monocytes, and cloned into both prokaryotic (pET28a) and eukaryotic (pcDNA3.1) expression vectors. The confirmed avian IL-19 amino acid sequence has 66.5% homology with human and murine IL-19, with a predicted protein sequence of 176 amino acids. Analysis of avian IL-19 amino acid sequence showed six conserved, structurally relevant, cysteine residues as found in mammals, but only one N-glycosylation residue. The recombinant IL-19 (rChIL-19) expressed in the prokaryotic system was purified by Ni(+)-resin column followed by endotoxin removal. Using purified avian rChIL-19, expression of Th2 cytokines was measured in splenocytes using quantitative real-time PCR (qRT-PCR). In the presence of rChIL-19, expression levels of IL-4 and IL-13, as well as IL-10, were significantly increased after 6- and 12 h treatments. This was confirmed by treating splenocytes with supernatants from IL-19 transfected cells. Also, avian monocytes incubated with rChIL-19 displayed increased expression of IL-1beta, IL-6, and IL-19. This study represents the first report for the cloning, expression, and functional characterization of avian IL-19. Taken together, avian IL-19 function seems to be conserved and similar to that of mammals and may play an important role in responses to intracellular poultry pathogens like bacteria and protozoa.


Avian Biology Research | 2010

Beta-glucans as immunomodulators in poultry: use and potential applications.

Chasity M. Cox; Rami A. Dalloul

Escalating consumer concerns have placed the poultry industry under mounting pressure to reduce the use of chemotherapeutic agents as feed additives. One possible alternative receiving increased attention is the use of immunomodulators such as β-glucan. Beta-glucans belong to a group of physiologically active compounds termed biological response modifiers due to their ability to stimulate the immune system. Beta-glucans are structural components of the cell wall of many bacteria, fungi, algae and yeast as well as cereal grains. The effects of β-glucans as active immunomodulators in mammals have been well noted; however, research concerning their impact in poultry has only recently been published. This review will begin with an “avian immunology primer”, and will then discuss various effects on performance and immune responses elicited by β-glucans in poultry and their potential implications to the industry.


Poultry Science | 2012

Immunological responses to Clostridium perfringens alpha-toxin in two genetically divergent lines of chickens as influenced by major histocompatibility complex genotype

Lindsay H. Sumners; Chasity M. Cox; Sungwon Kim; J E Salevsky; P. B. Siegel; Rami A. Dalloul

Chickens genetically selected for low (LA) or high (HA) antibody response to SRBC displayed a correlated change in MHC, so that LA chickens were 96% B13 and HA chickens were 96% B21. The LA line appears to be less susceptible to invasion by extracellular pathogens, whereas HA chickens are more resistant to infection by intracellular organisms. Resistance to Clostridium perfringens is one instance in which the lines do not follow their established trend of pathogen susceptibility, where during a clinical outbreak of necrotic enteritis, B21B21 genotypes experienced significantly less mortality than B13B13 genotypes. A study was carried out to assess immunological differences between LA and HA lines during exposure to C. perfringens α-toxin. Peripheral blood mononuclear cells were isolated from each genetic line, cultured with or without lipopolysaccharide (4 h), and exposed to varying concentrations of α-toxin (1; 10; 100; and 1,000 U/L) for 2 and 4 h. Evaluation of cellular proliferation, percentage of cytotoxicity, and immunological gene expression was carried out in a series of experiments. Cells isolated from HA chickens had significantly increased proliferation than those from LA chickens at low toxin levels (1 and 10 U/L) and significantly decreased proliferation at high toxin levels (100 and 1,000 U/L). Following exposure to lipopolysaccharide, the percentage of cytotoxicity was higher for LA than HA cells. In both assays, HA cells displayed superior performance following lipopolysaccharide-stimulation. Gene expression analysis of immune transcripts by quantitative real-time PCR revealed significantly upregulated expression of interferon (IFN)-γ, interleukin (IL)-8, IL-13 (2 h), IL-15, and CXCLi1 (4 h) in HA than LA chickens. Cells isolated from the LA line displayed significantly elevated expression of IL-2, IL-10, IL-13 (4 h), IL-16, IL-18, inducible nitric oxide synthase (iNOS), CXCLi1 (2 h), and lipopolysaccharide-induced tumor necrosis factor-α factor (LITAF) compared with the HA line. Clearly, these 2 genetic lines display highly divergent immune responses in regards to C. perfringens toxin exposure.

Collaboration


Dive into the Chasity M. Cox's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark C. Jenkins

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ray H. Fetterer

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate B. Miska

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge